The original plutonium-production piles in Hanford, Washington, General Groves explains in Now It Can Be Told: The Story of the Manhattan Project, we’re going to be helium cooled:
A major consideration in dropping the helium-cooled pile was the problem of designing and maintaining the necessary pressure-sustaining enclosure for the pile. Among other difficulties was that of loading and unloading such a unit under pressure. When it developed that the water-cooled pile would be easier and cheaper to design and build, all work on the helium method was stopped.
[…]
Later, after we had decided on water-cooling, we discovered that not only was it necessary to have large quantities of cold water, but that its purity was of the utmost importance. We were just lucky that the Columbia River water did not contain dissolved chemicals in sufficient amounts to necessitate more than normal treatment.
[…]
I was discussing the advisability of this with G. M. Read of du Pont, one night at Hanford, when Dr. Hilberry came into the room. I asked him for his views, and he replied that he did not think we would need the deionizing plant, but if we did, we could not do without it. I turned to Read and said, “Go ahead and build it.” Hilberry then asked what it would cost and I told him that it would be somewhere between six and ten million dollars. He replied, “I’m glad I didn’t know that when I gave my opinion.” Such quick decisions were not too frequent and they were always preceded by as much research, study and thought as could be devoted to them without delaying the completion of the project. Nevertheless, there were many decisions that had to be made when the unknown factors far outweighed the known. We built only the one deionizing plant and fortunately never found any need for it, for had it proved necessary, we would have had to build two more in a hurry, and would have lost considerable production while they were under construction.
[…]
Shortly after the Hanford site was selected, I had talked to Robins, who had built the fish ladders and elevators at the Bonneville Dam, and outlined the measures we were taking to protect the salmon in the Columbia River. He made a lasting impression on me at that time when he said, “Whatever you may accomplish, you will incur the everlasting enmity of the entire Northwest if you harm a single scale on a single salmon.” As it turned out, we did not.
The concrete side walls of the retention basins were designed to extend high enough above the ground to prevent anyone within a critical distance from being exposed to radiation. To avoid any turbulence in the river, the discharge lines were brought into the main stream at an angle to provide for a converging flow, and, to prevent fish from swimming up the discharge pipe, a minimum velocity of over twenty miles per hour was planned. In addition, all effluent was monitored continuously by instruments to make certain that the radioactivity was at all times within entirely safe limits.
[…]
Each pile unit was made of carefully machined, very pure graphite blocks with built-in aluminum tubes which were charged or loaded with uranium in the form of small cylinders or slugs. Since the piles were water-cooled, we were greatly concerned about the effects of corrosion, for it was estimated that the failure of only a small percentage of the tubes could cause the complete failure of the pile.
All design was governed by three rules: 1, safety first against both known and unknown hazards; 2, certainty of operation—every possible chance of failure was guarded against; and 3, the utmost saving of time in achieving full production. The complications were many, for many pieces of equipment weighing as much as 250,000 pounds each had to be assembled with tolerances more suitable for high-grade watchmaking. It was through the assistance and the strength of the industrial companies of America that du Pont was able to solve the hundreds of difficult design and material problems that had to be mastered.
[…]
We also encountered an extremely difficult problem in the welding of the steel plates surrounding the piles. This work had to be almost perfect. An average superior job would not do. It took months to perfect the techniques required. We created a special super-classification of welders with premium pay. To hold this classification, a welder was required to take special training. He then had to take practical examinations at regular intervals to make certain that the quality of his work would remain up to what we needed.
[…]
In order to insure an adequate water supply for each pile, completely independent water facilities were provided, each with duplicate lines. At the same time, all individual units were cross-connected. Arrangements were made for driving the water pumps by either electric motors or steam turbines, so that in case of a power failure from either source, a safe amount of water would still be provided. In addition, there were emergency elevated tanks with automatic cut-ins, in case the normal supply failed.
[…]
The piles themselves were surrounded by heavy shields of steel, pressed wood and concrete, to protect the operators from the extreme radioactivity that accompanies the formation of plutonium. The energy of this radiation is equivalent to that of hundreds of tons of radium.
[…]
Each plant was a continuous concrete structure about eight hundred feet long, in which there were individual cells containing the various parts involved in the process equipment. To provide protection from the intense radioactivity, the cells were surrounded by concrete walls seven feet thick and were covered by six feet of concrete.
In use, the equipment would become highly radioactive and its maintenance and repair would be difficult, if not impossible, except by remote control. Consequently, periscopes and other special mechanisms were incorporated into the plant design; all operations could thus be carried out in complete safety from behind the heavy concrete walls. The need for shielding and the possibility of having to replace parts by indirect means required unusually close tolerances, both in fabrication and in installation. This was true even for such items as the special railroad cars that moved the irradiated uranium between the piles and the separation plants. The tracks over which these cars moved were built with extreme care so as to minimize the chances of an accident. Under no circumstances could we plan on human beings directly repairing highly radioactive equipment.
After being discharged from the reactors, the uranium slugs were kept under water continuously, then sent on the specially designed railroad cars to an isolated storage area. There they were immersed in water until their radioactivity had decreased enough to permit the separation of their plutonium content by chemical treatment.
Following the removal of the plutonium the residues were still highly radioactive. They still had to be handled by remote control.
[…]
Experience gained at the Clinton laboratories indicated that the danger to anyone outside the immediate operating area would be much less than we had originally feared, but that the danger from the toxicity of the final product was considerably greater.
[…]
Those body cells which multiply rapidly, such as bone marrow, are most easily affected by gamma radiation, while the slower-growing cells are relatively unaffected.
[…]
The National Advisory Committee on X-Ray and Radium Protection had established a tolerance dose for gamma rays at one-tenth of one roentgen per day. Because this was not definitely known to be safe, the tolerance dose at Hanford was set at one-hundredth of a roentgen per day. This dose could be absorbed in a short period of time, or over an entire day, so long as it was not exceeded within a period of twenty-four hours. It was calculated that one foot of lead, seven feet of concrete or fifteen feet of water would provide adequate protection from the maximum radioactivity to be expected during the operation of one of our reactors.
[…]
In addition to all the other precautions, du Pont designed a control system for the piles that we thought would be safe no matter what happened. It consisted of three distinct elements: first, the control rods could be moved either automatically or manually into the side of the pile; second, safety rods were suspended above the pile so that, in an emergency, they could be instantaneously released; and third, as a last resort, arrangements were made to flood the pile with moderating chemicals. This last device was designed for remote operation from a shielded control room. If this safety device had to be employed, the pile would no longer be usable.