Britain’s Royal Navy experimented with broadcasting signals to interfere with enemy communication as far back as 1902, just five years after the first radios were installed on ships. By WWI, the use of radio was more sophisticated, and so were countermeasures. The German Zeppelins used fixes from radio stations to navigate; so on the night of 19 October 1917, the French switched radio broadcasts from the Eiffel Tower to another station to send the airships off course. When the Germans started using their own transmitters for navigation, the Allies drowned these out with louder transmissions on the same wavelength, possibly the first attempt to deliberately jam radio reception.
[…]
The first radio-guided weapon to see action was the German FS-1400 or Fritz-X developed in WWII. This was a three-thousand-pound glide bomb designed to attack heavily armored battleships and cruisers. It was a simple bomb fitted with small fins worked by radio control. A flare on the tail of the bomb allowed the bomb aimer to follow its progress and adjust its course with simple up-down, left-right corrections.
[…]
The Allies captured Fritz-X missiles and control equipment, and had developed effective countermeasures within a matter of months.
The British Type 650 Transmitter, and jammers from the US Naval Research Laboratory and Harvard’s Radio Research Laboratory, nullified the Fritz-X. The jammer steered the bomb as far over in one direction as possible, overriding the operator’s commands. From being a guaranteed hit, it became a guaranteed miss. The Germans dropped the idea of radio guidance, and the next version of the Fritz-X was guided via a wire spooling out of the back of the missile.
[…]
At its simplest, jamming may simply mean broadcasting noise in the frequency band that the receiver is operating in. This sort of brute force jamming is rare in military circles, where communications tend to hop from one frequency to another at rapid intervals, and it is difficult to jam the entire spectrum with enough power. Smart jammers detect and analyze an opponent’s communications and can selectively jam only in the ranges where needed. Jammers are also likely to be directional, rather than blasting out noise in all directions.
In the Iraq and Afghan conflicts, tactical jamming took on a new urgency. Insurgents had started triggering bombs using cheap cell phones. Special countermeasures were fielded to block the signals; the Pentagon spent some $17 billion on electronic countermeasures with some fifty thousand jamming units being issued. These included portable Warlock Green units for foot soldiers, which are credited with saving many lives.
[…]
It is notable that the 2014 Black Dart exercise included an EA-18 Growler, the most modern electronic warfare aircraft in the Air Force’s inventory, equipped with a range of powerful jammers. When the radio signal to a drone is jammed, it is usually programmed to return to the last point where it could communicate or simply return to base.
[…]
There is a growing interest in free-space optical communications, sometimes described as “like broadband over optical fiber, but without the fiber.” The laser signal is beamed through the air to the receiver. This method only works over line of sight (obviously enough) and, because of atmospheric effects, the range tends to be limited to a mile or so. It can carry as much data as a broadband fiber optic cable and would be ideal for a swarm of drones forming a mesh network. Because it does not rely on radio waves, optical communication cannot be jammed or hacked into.
In a more low-tech version of optical communication, researchers at the Postgraduate Naval Center in Monterey have looked at communicating via QR codes as a form of “digital semaphore.”
[…]
The team found that QR codes could be read from over five hundred feet away. A swarm could pass messages between members to coordinate its actions.
[…]
An artillery shell is out of control as soon as it leaves the barrel, as is a heat-seeking missile when it leaves the rails. Some missiles, designed to target air defense radar, already pick their own targets. The distinction between controlled and uncontrolled is subtler than you might expect.
[…]
If blocking communications does not work, we can try another weak point, navigation. A human pilot has many ways of finding their way around, but most drones only have GPS. The power of the Global Positioning System’s signal has been compared to a car headlight over ten thousand miles away, making it an easy signal to jam.
However, anti-jamming measures are getting better. Raytheon has developed a sophisticated anti-jam device for GPS called Landshield built around a controlled pattern reception antenna. This has an array of receiving elements that combine to cancel out the jamming from any given direction. When a jamming signal is detected, the array automatically nulls it out. It is like looking through a cardboard tube so you can see a faint light in the distance without being dazzled by lights nearby.
Raytheon’s previous generation of anti-jam GPS was the Advanced Digital Antenna Platform, which weighed about ten pounds and was the size of a telephone directory. The new Landshield fits on a silicon chip and may be integrated with military GPS devices, from portable units used by individual soldiers to the GPS-guided Paveway bomb and, of course, drones.
[…]
On Monday, 22 January 2007, an electronic warfare exercise being carried out in San Diego harbor accidentally jammed GPS signals across the city. Disruption started almost immediately. The emergency paging system at a hospital stopped functioning. The automated harbor traffic management system stopped working, threatening to throw the port into chaos. Air traffic control at San Diego airport reported problems with their system for tracking incoming aircraft. Some bank ATMs reportedly stopped giving out money.
The reason for this disruption is that many modern systems use the precision time signal from GPS satellites. In some cell phone networks the signal is used to give each mast a unique identity; if it is lost, the mast drops off the network. GPS timing signals time-stamp financial transactions to prevent fraud, and this may be why the cash machines stopped working. Power utilities use the GPS time signal to keep alternating current from different power plants in phase across the grid. If this is lost, then attempts to switch power supplies to channel power to where it is needed become inefficient as the out-of-phase currents clash. This may ultimately produce blackouts.
GPS jamming looks more like a weapon for a swarm attacking an urban target rather than as a way of stopping a swarm.
This vulnerability is one reason why alternatives to GPS are a hot topic. One such is the system developed by Australian company Locata. This uses a network of ground-based ‘pseudo-satellites’ which give a more accurate fix and would require vastly more powerful jammers to block.
[…]
You can already navigate urban areas without GPS thanks to Wi-Fi. Each Wi-Fi hotspot has its own fingerprint, including a Service Set ID and Media Access Control address, and transmits them continuously. Service providers including Google and Navizon map out the location of each node; by identifying those closest to you, you can pinpoint your location within less than a hundred feet.
Other researchers are navigating using “signals of opportunity,” including not only Wi-Fi but cell phone signals, radio and television transmitters, and other sources of radio waves. These may not be as accurate as GPS, but they can be used indoors as well as out, and cannot be stopped except by jamming absolutely everything.
[…]
Tomahawk cruise missiles were originally equipped with terrain-matching radar to compare the scenery with an electronic landscape map to determine their location. The difference now is that every smartphone has the storage and processing power to scan the scenery and find out where it is.