Video games often try to be “realistic” by getting the details right in how everything looks and sounds, but this physical fidelity isn’t as important in a training simulation as cognitive fidelity, Daniel Gopher explains:
My main interest has been how to expand the limits of human attention, information processing and response capabilities which are critical in complex, real-time decision-making, high-demand tasks such as flying a military jet or playing professional basketball. Using a tennis analogy, my goal has been, and is, how to help develop many “Wimbledon”-like champions. Each with their own styles, but performing to their maximum capacity to succeed in their environments.
What research over the last 15–20 years has shown is that cognition, or what we call thinking and performance, is really a set of skills that we can train systematically. And that computer-based cognitive trainers or “cognitive simulations” are the most effective and efficient way to do so.
This is an important point, so let me emphasize it. What we have discovered is that a key factor for an effective transfer from training environment to reality is that the training program ensures “Cognitive Fidelity”, this is, it should faithfully represent the mental demands that happen in the real world. Traditional approaches focus instead on physical fidelity, which may seem more intuitive, but less effective and harder to achieve. They are also less efficient, given costs involved in creating expensive physical simulators that faithfully replicate, let’s say, a whole military helicopter or just a significant part of it.
[...]
The need for physical fidelity is not based on research, at least for the type of high-performance training we are talking about. In fact, a simple environment may be better in that it does not create the illusion of reality. Simulations can be very expensive and complex, sometimes even costing as much as the real thing, which limits the access to training. Not only that, but the whole effort may be futile, given that some important features can not be replicated (such as gravitation free tilted or inverted flight), and even result in negative transfer, because learners pick up on specific training features or sensations that do not exist in the real situation.
[...]
In one [study], which constituted the basis for the 1994 paper, we showed that 10 hours of training for flight cadets, in an attention trainer instantiated as a computer game — Space Fortress — resulted in 30% improvement in their flight performance. The results led the trainer to be integrated into the regular training program of the flight school. It was used in the training of hundreds of flight cadets for several years. In the other one, sponsored by NASA, we compared the results of the cognitive trainer vs. a sophisticated, pictorial and high-level-graphic and physical-fidelity-based computer simulation of a Blackhawk helicopter. The result: the Space Fortress cognitive trainer was very successful in improving performance, while the alternative was not. The study was published in the proceedings of the Human Factors and Ergonomic Society: Hart S. G and Battiste V. (1992), Flight test of a video game trainer. Proceedings of the Human Factors Society 26th Meeting (pp. 1291–1295).
This led to IntelliGym‘s basketball training software:
In order to develop a basketball cognitive training tool, our researchers mapped the brain skills that are required for top performance in the game of basketball. These include (among others) reading plays, positioning, decision making, team work, and execution under pressure. Together, they constitute what is usually referred to as game intelligence. With this map in hand, the researchers designed a system that simulates the exact same skill set.