These people really do control our society

Friday, September 9th, 2016

Professor Julian Stanley’s Study of Mathematically Precocious Youth (SMPY) has for 45 years tracked the careers and accomplishments of some 5,000 individuals and generated more than 400 papers:

With the first SMPY recruits now at the peak of their careers, what has become clear is how much the precociously gifted outweigh the rest of society in their influence. Many of the innovators who are advancing science, technology and culture are those whose unique cognitive abilities were identified and supported in their early years through enrichment programmes such as Johns Hopkins University’s Center for Talented Youth — which Stanley began in the 1980s as an adjunct to SMPY. At the start, both the study and the centre were open to young adolescents who scored in the top 1% on university entrance exams. Pioneering mathematicians Terence Tao and Lenhard Ng were one-percenters, as were Facebook’s Mark Zuckerberg, Google co-founder Sergey Brin and musician Stefani Germanotta (Lady Gaga), who all passed through the Hopkins centre.

“Whether we like it or not, these people really do control our society,” says Jonathan Wai, a psychologist at the Duke University Talent Identification Program in Durham, North Carolina, which collaborates with the Hopkins centre. Wai combined data from 11 prospective and retrospective longitudinal studies, including SMPY, to demonstrate the correlation between early cognitive ability and adult achievement. “The kids who test in the top 1% tend to become our eminent scientists and academics, our Fortune 500 CEOs and federal judges, senators and billionaires,” he says.


His interest in developing scientific talent had been piqued by one of the most famous longitudinal studies in psychology, Lewis Terman’s Genetic Studies of Genius. Beginning in 1921, Terman selected teenage subjects on the basis of high IQ scores, then tracked and encouraged their careers. But to Terman’s chagrin, his cohort produced only a few esteemed scientists. Among those rejected because their IQ of 129 was too low to make the cut was William Shockley, the Nobel-prizewinning co-inventor of the transistor. Physicist Luis Alvarez, another Nobel winner, was also rejected.

Stanley suspected that Terman wouldn’t have missed Shockley and Alvarez if he’d had a reliable way to test them specifically on quantitative reasoning ability. So Stanley decided to try the Scholastic Aptitude Test (now simply the SAT). Although the test is intended for older students, Stanley hypothesized that it would be well suited to measuring the analytical reasoning abilities of elite younger students.

In March 1972, Stanley rounded up 450 bright 12- to 14-year-olds from the Baltimore area and gave them the mathematics portion of the SAT. It was the first standardized academic ‘talent search’. (Later, researchers included the verbal portion and other assessments.)

“The first big surprise was how many adolescents could figure out math problems that they hadn’t encountered in their course work,” says developmental psychologist Daniel Keating, then a PhD student at Johns Hopkins University. “The second surprise was how many of these young kids scored well above the admissions cut-off for many elite universities.”


The SMPY data supported the idea of accelerating fast learners by allowing them to skip school grades. In a comparison of children who bypassed a grade with a control group of similarly smart children who didn’t, the grade-skippers were 60% more likely to earn doctorates or patents and more than twice as likely to get a PhD in a STEM field. Acceleration is common in SMPY’s elite 1-in-10,000 cohort, whose intellectual diversity and rapid pace of learning make them among the most challenging to educate. Advancing these students costs little or nothing, and in some cases may save schools money, says Lubinski. “These kids often don’t need anything innovative or novel,” he says, “they just need earlier access to what’s already available to older kids.”

Leave a Reply