The Other Green Revolution

Wednesday, March 6th, 2013

You’ve probably heard of Norman Borlaug, the Father of the Green Revolution, who won a Nobel Peace Prize in 1970 for developing high-yield varieties of wheat.

You probably haven’t heard of Henri de Laulanié though, a French Jesuit priest who worked in Madagascar starting in the 1960s. He found that four changes in traditional practices had a big effect:

  • Instead of planting seedlings 30-60 days old, tiny seedlings less than 15 days old were planted.
  • Instead of planting 3-5 or more seedlings in clumps, single seedlings were planted.
  • Instead of close, dense planting, with seed [densities] of 50-100 kg/ha, plants were set out carefully and gently in a square pattern, 25 x 25 cm or wider if the soil was very good; the seed [density] was reduced by 80-90% . . .
  • Instead of keeping rice paddies continuously flooded, only a minimum of water was applied daily to keep the soil moist, not always saturated; fields were allowed to dry out several times to the cracking point during the growing period, with much less total use of water.

The effect of these changes was considerably more than Borlaug’s doubling of yield:

The farmers around Ranomafana who used [these methods] in 1994-95 averaged over 8 t/ha, more than four times their previous yield, and some farmers reached 12 t/ha and one even got 14 t/ha. The next year and the following year, the average remained over 8 t/ha, and a few farmers even reached 16 t/ha.

Seth Roberts’ point is that Henri de Laulanié resembled a personal scientist:

Like a personal scientist, he cared about only one thing (improving yield). Professional scientists have many goals (publication, promotion, respect of colleagues, grants, prizes, and so on) in addition to making the world a better place. Like a personal scientist, de Laulanié did small cheap experiments. Professional scientists rarely do small cheap experiments. (Many of them worship at the altar of large randomized trials.) Like a personal scientist, de Laulanié tested treatments available to everyone (e.g., butter). Professional scientists rarely do this. Like a personal scientist, he tried to find the optimal environment. In the area of health, professional scientists almost never do this, unless they are in a nutrition department or school of public health. Almost all research funding goes to the study of other things, such as molecular mechanisms and drugs.

Personal science matters because personal scientists can do things professional scientists can’t or won’t do. de Laulanié’s work shows what a big difference this can make.

(Hat tip to Aretae.)

Leave a Reply