Nick Patterson

Thursday, December 23rd, 2010

Nick Patterson has had an interesting career — or string of them:

He was born in London in 1947. When he was 2 his Irish parents learned that he had a congenital bone disease that distorted the left side of his skull; his left eye is blind. He became a child chess prodigy who earned top scores on math exams, and later attended Cambridge, completing a math doctorate in finite group theory. In 1969, he won the Irish chess championship.

In 1972, Dr. Patterson began working at the Government Communications Headquarters, where his research remains classified. He absorbed through his mentors the mathematical philosophy of Alan Turing, the genius whose crew at Bletchley Park — the headquarters’ predecessor — broke Germany’s encryption codes during World War II. The biggest lesson he learned from Dr. Turing’s work, he said, was “an attitude of how you look at data and do statistics.”

In particular, Dr. Turing was an innovator in Bayesian statistics, which regard probability as dependent upon one’s opinion about the odds of something occurring, and which allows for updating that opinion with new data. In the 1970s, cryptographers at the communications headquarters were harnessing this approach, Dr. Patterson said, even while academics considered flexible Bayesian rules heretical.

In 1980, Dr. Patterson moved with his wife and children to Princeton, N.J., to join the Center for Communications Research, the cryptography branch of the Institute for Defense Analyses, a nonprofit research center financed by the Department of Defense. His work earned him a name in the cryptography circle. “You can probably pick out two or three people who’ve really stood out, and he’s one of them,” said Alan Richter, a longtime scientist at the defense institute.

In 1993 Dr. Patterson moved to Renaissance Technologies, a $200 million hedge fund, at the invitation of its founder, James H. Simons, a mathematician and former cryptographer at the institute. The fund made trades based on a mathematical model. Dr. Patterson knew little about money, but the statistical methods matched those used in code breaking, Dr. Simons said: analyzing a series of data — in this case daily stock price changes — and predicting the next number. Their methods apparently worked. In Dr. Patterson’s time with the hedge fund, its assets reached $4 billion.

By 2000, Dr. Patterson was restless. One day, he ran into Jill P. Mesirov, another former defense institute cryptographer, and mentioned his interest in biology. Dr. Mesirov, then director of computational biology at the Whitehead/M.I.T. Center for Genome Research, which later became the Broad Institute, hired him.

“Really, what we do for a living is to decrypt genomes,” Dr. Mesirov said. Cryptographers look at messages encoded as binary strings of zeros and ones, then extract underlying signals they can interpret, Dr. Mesirov said. The job calls for pattern recognition and mathematical modeling to explain the data. The same applies for analyzing DNA sequences, she said.

One common genomic analysis tool — the Hidden Markov Model — was invented for pattern recognition by defense institute code breakers in the 1960s, and Dr. Patterson is an expert in that technique. It can be used to predict the next letter in a sequence of English text garbled over a communications line, or to predict DNA regions that code for genes, and those that do not.

The most interesting finding of his recent “hobby” involves human evolution:

Some human DNA regions trace back to a much older common ancestor of humans and chimps than other regions do, with the ages varying by up to four million years. But on the X chromosome, people and chimps share a far younger common ancestor than on other chromosomes.

After the researchers tested various evolutionary models, the data appeared best explained if the human and chimp lineages split but later began mating again, producing a hybrid that could be a forebear of humans. The final breakup came as late as 5.4 million years ago, the team calculated.


  1. Ross says:

    Not to hijack the post topic, but I always love seeing topics on biology, and this one served to remind me of the recent and terrific creaking of the paradigmatic tectonic plates of evolutionary theory — in fact of all of biology — authored by none other than Carl Woese and a bright UK physicist named Goldenfeld.

    Basically, they say that much of what the above average Joe and his Bio 101 professor are saying about “biology is chemistry” and Lamarckism and evolutionary theory is increasingly irrelevant, distracting, incorrect, and — worst of all — not useful as a modern theory underyling Biology. They suggest using the ideas found in condensed matter physics as a basis for construction of biological theory.

    Interested parties should search for their “Life Is Physics” article in a recent issue of… Nature, I think it was.

Leave a Reply