Improved lithium ion batteries

Wednesday, November 26th, 2008

A team led by Jaephil Cho at Hanyang University in Korea has improved lithium ion batteries — not by improving the lithium cobalt oxide cathode, but by improving the graphite anode:

It would be nice to have an anodic material that could store more lithium ions than graphite. Silicon presents an interesting alternative. The problem: silicon expands a great deal while absorbing lithium ions (charging) and shrinks when giving them up (discharging). After several cycles the required thin silicon layers are pulverized and can no longer be charged.

Cho’s team has now developed a new method for the production of a porous silicon anode that can withstand this strain. They annealed silicon dioxide nanoparticles with silicon particles whose outermost silicon atoms have short hydrocarbon chains attached to them at 900 °C under an argon atmosphere. The silicon dioxide particles were removed from the resulting mass by etching. What remained were carbon-coated silicon crystals in a continuous, three-dimensional, highly porous structure.

Anodes made of this highly porous silicon have a high charge capacity for lithium ions. In addition, the lithium ions are rapidly transported and stored, making rapid charging and discharging possible. A high specific capacity is also attained with high current. The changes in volume that occur upon charging and discharging cause only a small degree of swelling and shrinking of the pore walls, which have a thickness of less than 70 nm. In addition, the first charging cycle results in an amorphous (noncrystalline) silicon mass around residual nanocrystals in the pore walls. Consequently, even after 100 cycles, the stress in the pore wall is not noticeable in the material.

Leave a Reply