Can Terrorists Turn Out Gotham’s Lights?

Tuesday, December 7th, 2004

Can Terrorists Turn Out Gotham’s Lights? opens with the surprising consequences of last year’s blackout:

Who stayed lit after Gotham’s lights went out during the blackout of August 2003? Batteries and standby generators kicked in to keep trading alive on the New York Stock Exchange and the Nasdaq. But the AmEx failed to open; true, it had backup generators for the trading-floor computers, but it depended on Consolidated Edison to cool them, so that they wouldn’t melt into puddles of silicon. Banks kept their ATM-control computers running at their central offices, but most of the ATMs themselves went dead. With their robust backup generators, Verizon’s wireline switching centers smoothly handled traffic volumes three times above normal, but cell phone service deteriorated fast, since soaring call volumes quickly drained the cell tower backup batteries. Traffic lights went out, but backup generators kept the city’s Traffic Management Center alive enough to re-synchronize about half of them quickly when the power came back on. The dedicated fiber line that links City Hall to the city’s broadcast media went dark when a Time Warner hub lost power. The radio communications system for police, fire, and other emergency services progressively lost capacity as the backup batteries for many radio repeaters ran down. Power from a satellite truck, though, allowed Katie Couric and Lester Holt to broadcast the Today show from Rockefeller Plaza.

The Times Square “W” hotel was open for business and humming: management had upgraded the backup system after an earlier outage reminded everyone that electricity ran not just the electronic room keys but also the water pumps that flushed the toilets. But the New Yorker Hotel in midtown went dark. To much acclaim, it had previously installed a “synchronous” cogeneration plant — which unfortunately has to shut down when grid power fails so that it doesn’t electrocute linemen working on the wires outside. As it happened, the hotel was hosting a seminar for elevator mechanics that day; they helped extract guests trapped in the hotel’s elevators, including a group trapped in the middle of a 20-story blind shaft, which required breaking a hole through a wall on the 15th floor.

Some stats:

It takes almost 11 gigawatts of electricity to keep New York City lit in the late afternoon on a hot summer day — a huge amount of power. [...] Few of us have even the vaguest idea just how much a gigawatt of power might be. So let’s talk Pontiacs instead: 110,000 of them, parked door to door in Central Park. At exactly the same moment, 110,000 drivers start the 110,000 engines, shift into neutral, push pedal to metal, and send 110,000 engines screaming up to the tachometer’s red line. Collectively, these engines are now generating a total of about 11 gigawatts of shaft power.

Without electricity, of course, the computers don’t run — and a modern economy runs on computers:

Much of the city’s wealth exists and grows within a steady flow of the half-gigawatt (or so) of power required to keep silicon hot, screens lit, phones humming, discs spinning, lasers shining, and air conditioners running to dump the waste heat that all this digital hardware produces. The well-tempered electron is the new medium of exchange. Without power, the wealth of the modern city evaporates. The 8/14 blackout cost the city an estimated $1 billion.

Some history:

Electric New York started in 1882, at Thomas Edison’s Pearl Street Station power plant. Edison had designed and built six “Jumbo Engine-Driver Dynamos,” each one a 27-ton, steam-driven 100-kilowatt behemoth, four times bigger than any other electric generator previously built. The entire useful output of all these tons of steel, and the mountains of coal that they would burn, ran down thin metal wire — 15 miles of it, snaking through New York City’s bustling financial district to the 85 customers who had installed Edison’s new electric lamps.

A French scientist, Sadi Carnot, realized that “the bigger the gap in temperature between the furnace and the condenser, the more useful work you can extract,” and “bigger systems are easier to keep hot because they have less surface per unit of volume” — which has led to bigger and bigger power plants, and greater and greater efficiency. But these large, centralized plants need to move electricity to the consumer:

A 1-gigawatt plant — of which there are now plenty — can power the homes, workplaces, and factories of 400,000 people, but the power has to get to them, moving either above the tarmac or underneath it.

And that grid can fail:

Weather has caused four massive outages in recent memory: hurricanes in 1992 and 1996, and ice storms in 1998 and 2002. Spasms of human stupidity have worked their mischief, too. In 1991, construction workers installing drawbridge support pillars in the Chicago River put one in the wrong place; seven months later, a car-size crack opened up in the roof of a freight tunnel directly beneath it, and the ensuing flood shut down utility power for weeks in the heart of Chicago.

When a serious disturbance hits the grid, problems can cascade and amplify like trucks and cars piling up on a highway. Because they are so long and carry so much current, the wires store huge amounts of power in the electric and magnetic fields that surround them. They have enormous electrical inertia, and when things change abruptly at one end, the wires themselves act like massive malignant generators that knock voltage and current out of phase and send huge amounts of “reactive power” sloshing up and down the system, like waves in a bathtub — except that they propagate at close to the speed of light.

What about smaller, decentralized alternatives (and backups)?

With 2,000 square feet set aside for on-site power, a diesel generator together with ancillary power conversion electronics and a buried fuel tank can provide a megawatt of power for a week. On the same footprint, a solar array with its essential backup batteries can provide only a hundreth as much power, and at roughly a hundred times the capital cost. [...] Some 3 to 5 percent of the public grid’s capacity is backed up by arrays of batteries (and ancillary electronics), parked under desktops or in office closets or basements, that cushion delicate equipment from electrical blips and supply power during blackouts ranging from minutes to hours. Also backing up the grid stand some 80 gigawatts of on-site diesel generators — about 10 percent of the total generating capacity that lights the grid.

Leave a Reply