This is exactly what Makarenko means by a failure of detonation control

Monday, January 8th, 2024

Russian tactical radars are designed to pick up jets, not small, slow-moving targets:

“The results of field tests showed that the target detection radar of the Tor air defense system provides detection of small UAVs at ranges of only 3-4 km,” writes Makarenko.

This explains why drones are able to get so close and take video of these systems: the Russians are unable to spot a drone unless it is practically on top of them. When the drones are spotted, Makarenko says Tor has trouble shooting them down.

“The practical experience of experimental firing at small targets [with Tor] … indicates the low efficiency of their destruction. The main reasons for this are the imperfection of the SAM warhead detonation control system, as well as large errors in target tracking and SAM guidance on small-sized UAVs.“

This has been borne out in Ukraine, for example by this video of a Tor missile hurtling past a Ukrainian quadcopter without exploding. This is exactly what Makarenko means by a failure of detonation control.

Spent coffee grounds could make concrete stronger

Sunday, January 7th, 2024

Concrete is made of four basic ingredients: water, gravel, sand and cement.

Roychand and his team partially replaced sand with biochar — a material similar to charcoal — derived from coffee waste; they obtained their best result when they replaced 15% of the sand and baked the grounds at 350 degrees Celsius (662 degrees Fahrenheit). The resulting concrete was 30% stronger than regular concrete by compressive strength — the ability of the material to withstand a load.

In regular concrete, water, its second-largest ingredient by volume, is absorbed by the cement over time, reducing the amount of moisture that’s still inside the concrete, Roychand says. This drying effect, known as desiccation, causes shrinkage and cracking at a microscale, weakening the concrete.

Biochar from coffee waste can reduce this natural process. When the biochar is mixed with concrete, Roychand says, its particles act like tiny water reservoirs, distributed throughout the concrete. As the concrete sets and begins to harden, the biochar slowly releases the water, essentially rehydrating the surrounding material and reducing the impact of shrinkage and cracking.

Few would call the Predator a design classic

Tuesday, January 2nd, 2024

Swarm Troopers by David HamblingFew would call the Predator a design classic, David Hambling notes (in Swarm Troopers):

It is more a technological kludge of different components tacked together, with an engine derived from a snowmobile at the back, an outsize satellite communications pod stuck on top, and missiles so heavy it can barely carry them slung underneath. According to one estimate, it takes seventeen people just to fly this “unmanned” aircraft. And yet the General Atomics MQ-1 Predator has been immeasurably more successful than any previous drone.

[…]

DARPA, the Pentagon’s Defense Advanced Research Projects Agency, identified the need for a long-endurance drone and had carried out a classified study under the codename Teal Rain in the 1970s. This led to the construction of an aircraft called Amber with a wooden propeller and a distinctive upside-down-V tail.

Amber was designed by Abraham Karem, an expert on gliders and other soaring aircraft.

[…]

Leading Systems’ most important asset was a cheap export version of the Amber called the GNAT-750. The Turkish government had expressed an interest in the GNAT-750, a larger version of Amber, with a wingspan of thirty-six feet and an empty weight of five hundred pounds. Being an export model, it had less expensive electronics. The engine was a German Rotax 914 used in sailplanes and light aircraft (a smaller version is used in snowmobiles).

The GNAT-750 flew at barely a hundred miles an hour, but resembling a glider it required minimal power to stay in the air. A flight endurance of around forty-eight hours meant the GNAT-750 could maintain constant watch over a given area for longer than any manned aircraft.

[…]

When the 1993 conflict in Bosnia flared up, the US had no suitable reconnaissance drones on hand. Satellites were unable to see beneath the cloud cover. Existing spy planes were designed to operate in hostile skies, flying at extreme altitude like the U-2 or at extreme speed like the Mach-3 SR-71 Blackbird. The requirement was for a drone that could fly at low speed and low altitude, carry an off-the-shelf camera system, and beam back real-time video via a relay aircraft.

[…]

The GNAT-750 looked like the ideal solution. It provided a stable platform with long endurance and, because it was “export technology,” there was nothing sensitive that would cause problems if one was shot down and the remains analyzed.

All the GNAT-750 needed was the communications link to a relay aircraft.

[…]

One of the modifications overseen by the CIA was a security feature that shut down everything if the speed dropped too low, as it was assumed the aircraft must be on the ground. A gust of wind from behind caused the flight speed indicator to drop below the vital figure. The GNAT-750 duly switched itself off and dropped like a stone.

That sort of accident could kill a manned program along with the pilot, but the loss of a drone is not such a serious matter.

[…]

The CIA operated the GNAT-750 from Albania, flying missions to Bosnia with considerable success. Video was sent back via the manned relay aircraft — like the earlier TDR-1, DASH, and Firebee, radio range was the limitation — and missions only lasted as long as the relay plane was in place.

[…]

The resolution on the ground was eighteen inches — as good as many satellites, with the advantage that it could be sent when and where needed, whereas satellites only appear every ninety minutes as their orbit allows.

[…]

The drone turned out to be stealthy, not from design but because it was largely made of composite material and there was not much metal to give a radar return.

[…]

The Pentagon was not content to let the CIA have a monopoly on drones. As it was apparent that there might be further limited conflicts where such drones could be useful, they funded their own development of the GNAT-750. This was an Advanced Concept Technology Demonstration or ACTD for a version known as the 750-45 or 750-TE Predator. The Predator name was chosen after a competition among General Atomics employees.

The result was a larger aircraft; the empty weight almost doubled to a thousand pounds. It could stay in position five hundred miles from its base for twenty-four hours. Most important, it had extra communication equipment, including a large and unwieldy but effective Ku-band satellite communications setup with a gimbaled antenna that swivels around under its cover to keep pointing at a satellite. Sudden maneuvers tended to break the link and contact could be lost for a minute; the autopilot kicked in while the drone found its satellite again. While it was not be entirely reliable, armed with this capability, the new drone could beam back video from anywhere in the world without a relay plane. And it could fly anywhere, watching for as long as fuel lasted. It entered service in 1995 as the RQ-1 Predator.

[…]

At ten thousand feet it was inaudible, and rarely noticed by those on the ground unless they actually craned their head back to look at it. Skilled operators learned to use the cover of the sun to shield their aircraft from those they were watching.

In former Yugoslavia the Predator was of little use in directing air strikes due to a lack of training and poor communication between different units. One officer complained it took about forty-five minutes to get a strike aircraft into the same area as the drone, while the drone operators sometimes provided poor descriptions of the target — “the house with orange tiles” was not enough in a village with twenty of them. This experience prompted the addition of a laser illuminator to the Predator so the operator could highlight an aim point by shining the laser light on it, “sparkling” it, in in Air Force slang.

[…]

In a later addition, originally known as Wartime Integrated Laser Designator (WILD), Predators were fitted with lasers to mark targets so laser-guided weapons could home in on them — “lasing” rather than just “sparkling.”

Contested Logistics System, 300 Nautical Miles

Tuesday, December 26th, 2023

Silent Arrow has been selected by the USAF’s accelerator, AFWERX, for an SBIR contract focused on its CLS-300 (“Contested Logistics System, 300 Nautical Miles”) long-range attritable cargo drone — which sounds suspiciously like it’s not for cargo:

The CLS-300 is based on the commercially successful Silent Arrow GD-2000, which according to the company, is the world’s first heavy payload, autonomous and attritable cargo delivery aircraft designed to carry 1,500 lbs. of cargo over 35 nautical miles when deployed from cargo aircraft such as the Lockheed Martin C-130, Boeing C-17, and Airbus A400M.

Whereas the GD-2000 is a glider, the new CLS-300 can travel nearly 10 times as far by utilizing an innovative propulsion unit and propeller system that are inexpensive enough to allow the entire cargo drone to be attritable. In addition to being air droppable, it will also be capable of taking off from the ground including from unimproved surfaces, naval vessels and other launch points.

It maintained height and stayed in the jet stream for the three-day journey across the Pacific

Monday, December 25th, 2023

Swarm Troopers by David HamblingIn December 1944, David Hambling explains (in Swarm Troopers), US military observers on the West Coast reported a wave of unidentified flying objects:

On investigation, these were found to be paper balloons thirty feet across.

[…]

The balloons were filled with hydrogen and had a complex mechanical gondola. At first, they were thought to be weather balloons, but after reports of unexplained explosions, one was captured intact and found to be carrying incendiary bombs. This was the Japanese Fu-Go or “windship weapon.”

[…]

It was months before intelligence revealed they had flown all the way from Japan. The Japanese were taking advantage of a newly discovered natural phenomenon, the jet stream, a narrow ribbon of fast-moving air at high altitudes.

[…]

A clockwork mechanism controlled the release of a set of small sandbags around the rim of the gondola. Whenever the balloon fell too low, it dropped another sandbag. If it rose too high, which might cause it to burst, a valve vented a small amount of hydrogen. This control system meant it maintained height and stayed in the jet stream for the three-day journey across the Pacific.

[…]

The aim was to start forest fires in the heavily wooded regions of the Pacific Northwest. This would spread panic and divert resources from the war effort. The target was big enough that even this rough method of aiming had a chance of success.

[…]

US analysts estimated the Fu-Go cost $ 200 each, at a time when a P-51 Mustang was $ 50,000. The little balloons were hard to intercept. There was not enough metal on them to show up on radar, and they were surprisingly fast at high altitude, making them difficult to catch. Only around twenty were shot down.

[…]

At least four hundred Fu-Go made it to America, scattered from Mexico to Canada. The number would have been greater but for a problem with antifreeze in the altitude control system. This was too weak and the altitude controls were apt to freeze up, leaving Fu-Go to slowly descend into the waters of the Pacific.

After the war, the US considered balloons:

The E77 balloon bomb was similar to the Fu-Go, but delivered an anti-crop agent in the form of feathers dipped in a bacterial or fungal culture. Like the Fu-Go it was an imprecise way of hitting a large target, but 1954 tests suggested that balloon bombs would be effective.

[…]

The US also tested long-distance balloons for photographing enemy territory, but again balloons were edged out by manned aircraft. As always, the US military took more interest in high-performance manned aircraft than small, unmanned alternatives.

The remains were put on display, but there was no media interest

Monday, December 18th, 2023

Swarm Troopers by David HamblingIf the Pentagon hates drones, David Hambling notes (in Swarm Troopers), the CIA seems to love them:

Drones have a unique capability to carry out deniable operations, which are important to the CIA. The Agency learned the hard way just how disastrous it can be when a spy plane mission goes wrong.

[…]

Four years after the U-2 incident, the Chinese shot down a number of Fire Fly drones in their airspace. The remains were put on display and, like the Russians before them, the Chinese denounced American imperialist aggression. But there was no media interest. The Chinese might well claim that the peculiar wreckage was from American unmanned spy planes, but where was the proof? There was none of the international outcry that had accompanied the Gary Powers incident and no embarrassment for the politicians or the CIA. Equally, there was no risk that the pilot would be interrogated and give away information. (The main long-term consequence was that the Chinese reverse-engineered the drones. They ended up with a clone called WuZhen, which kick-started their own unmanned aircraft effort).

When drones did eventually find a place in the US military, thanks to the success of the Predator, it was only with considerable assistance from the CIA.

This will be the first time that the U.S. military has launched a nuclear reactor into space since 1965

Friday, December 15th, 2023

Lockheed Martin has been designing a nuclear thermal propulsion (NTP) engine for cislunar operations for DARPA’s DRACO program:

But fission can do much more than simple propulsion, and that’s why the U.S. military is forking over $33.7 million for Lockheed Martin—along with Space Nuclear Power Corp (SpaceNukes) and BWX Technologies, Inc. (BWXT)—to start designing a nuclear spacecraft as part of the Joint Emergent Technology Supplying On-Orbit Nuclear (JETSON) project.

This technology demonstrator will use nuclear fission to power Stirling engines that produce between 6 kWe and 20 kWe of electricity—Lockheed Martin claims that this provides four times the power of conventional solar arrays without the need for constant sunlight. This technique comes directly from lessons learned with NASA’s Kilopower Reactor Using Stirling Technology (KRUSTY) experiment, which investigated how to provide electricity via nuclear power for future outposts on the Moon and, eventually, Mars.

[…]

The fission engine is inert at launch and won’t turn on until the JETSON spacecraft is in a safe, non-decaying Earth orbit. Once the fission reactor creates this energy, the electricity will power Hall-effect thrusters (a kind of ion thruster that is electrified to create acceleration) that are already used on the company’s LM2100 satellites.

[…]

This will be the first time that the U.S. military has launched a nuclear reactor into space since 1965, when the U.S. launched the SNAP-10A experimental nuclear-powered satellite (which was also the first ion thruster ever in space).

It’s about time we got some real-life atomic rockets.

Aquila really was designed for World War Three

Monday, December 11th, 2023

Swarm Troopers by David HamblingIn the early 1980s, David Hambling explains (in Swarm Troopers), the Israelis demonstrated drones’ potential:

In 1982 Israeli drones fitted with TV cameras located Syrian surface-to-air missile radar, while other drones carried radar jammers or acted as decoys. A squadron of Firebees mimicking fighter jets tempted the surface-to-air missile units to turn on their radar and reveal their location; the Firebees evaded every single one of the forty-three missiles fired at them. The defenders were left vulnerable to a follow-up strike by manned aircraft before they could reload. Using this combination of drone tactics, the Israelis destroyed seventeen missile sites with no loss.

The US Army’s Aquila drone would serve a slightly different role — a role that looks familiar to us now:

Aquila would give a soldier a view of the other side of the hill, and would be able to direct artillery fire without the need for an observer on the spot. It also provided a new, high-tech means of tackling the Soviet tank divisions massed on the border between East and West Germany. Artillery was vastly more effective against armored vehicles thanks to new “bomblet rounds” that scattered the area with hundreds of armor-piercing mini-bombs instead of a single warhead. However, an observer still had to make sure that shells were landing in the right area, calling corrections if the aim point needed to be shifted.

There was also a brand new laser-guided artillery shell called the M712 Copperhead, which could knock out a tank from ten miles away with the first shot–but there had to be an observer on the scene with a laser designator to illuminate the tank.

Alas, it was a very American Military-Industrial Complex take on the concept:

The project was not managed well. Aquila went from being a cheap and simple drone to a “gold-plated” one with every modern development. The Israeli drones cost around $40 thousand each; Aquila started out at $100 thousand and went up rapidly from there.

[…]

Aquila needed to be stealthy, which demanded an elaborately shaped body, limiting space inside. The cheap daylight TV camera was supplemented with an expensive thermal imaging camera. Communications were made jam-proof with the aid of complex steerable antennas and state-of-the-art radios that fired off data in short bursts. It gained a sophisticated navigation system: in the days before GPS, this was an inertial measurement system based on gyroscopes, a sort normally fitted to manned aircraft.

[…]

In order to ensure that expensive drones were not lost, Aquila had an automated recovery system using infra-red sensors and beacons, supplemented with an emergency parachute.

On top of this, the whole thing was hardened to withstand the effects of a nuclear blast. Aquila really was designed for World War Three. By 1984 the sticker price was somewhere over a million dollars per aircraft.

[…]

Nobody could understand why it was so difficult and complicated simply to put a TV camera on a remote-controlled plane. The failure of Aquila was a strong argument against further drone development for many years: “We tried them before, and they didn’t work.”

Marine Corps looks at ocean glider for rapid resupply to fight China

Friday, December 8th, 2023

The Marine Corps Warfighting Lab has signed a nearly $5 million contract to test out Rhode Island-based Regent‘s Viceroy seaglider, which uses hydrofoils and the wing-in-ground effect to fly efficiently just above the surface of the ocean.

George Downs of the Wall Street Journal declares it not quite there yet:

An eVinci microreactor and surrounding infrastructure is about half the size of a hockey rink

Thursday, December 7th, 2023

The Saskatchewan Research Council (SRC) is poised to become Westinghouse’s first customer for its eVinci microreactor — a flagship 5-MWe/13-MWth “nuclear battery”:

At the heart of the eVinci is a fully passive heat pipe–cooled design that will use tristructural isotropic (TRISO) fuel. Its alkali metal heat pipe technology relies on alkali metal phase change to capture temperature uniformity within the reactor core. The reactor’s core, built around a solid steel monolith, has channels for both heat pipes and fuel pellets, with each fuel pin placed adjacent to several heat pipes. The array of closed heat pipes essentially removes heat from the nuclear core and transfers that heat to air, which then turns a turbine in an open-air Brayton thermodynamic power conversion cycle.

Along with providing redundancy of the primary heat removal path, the heat pipes eliminate the need for a reactor coolant pump, bulk coolant, and associated equipment, as well as enable a modular core design, Westinghouse President of eVinci Microreactor Jon Ball told POWER in October.

An eVinci microreactor and surrounding infrastructure is about “half the size of a hockey rink,” Westinghouse says. In addition, unlike a high-temperature gas reactor (HTGR), heat pipe reactors are not pressurized and have no moving parts, though they are passive (naturally driven) and can self-adjust to the amount of heat transferred—which allows inherent load following

As usual, nobody liked a smart robot

Monday, December 4th, 2023

Swarm Troopers by David HamblingIn contrast to the DASH, which started out as a combat aircraft and ended as a target, David Hambling explains (in Swarm Troopers), the Teledyne Ryan Firebee started out as a target and ended as much more:

The Firebee was a sleek, jet-powered machine, twenty-three feet long and with a top speed of over 700 mph. It could fly at any height from the treetops to fifty thousand feet. It could be launched from an aircraft and remotely controlled from two hundred miles away. The Firebee would return to the ground on a parachute, an easy feat for a small plane with no human inside risking broken bones.

There was little interest from the Air Force’s mainstream, but the highly unconventional BIG SAFARI team liked the idea. BIG SAFARI was set up to circumvent the usual complexities of Air Force procurement, to provide quick solutions to urgent problems. They funded development of a version of the Firebee called Fire Fly or Model 147, and it went through their streamlined channels without the interference it might have otherwise endured.

[…]

In the first trials the F-102 Delta Dagger and F-106 Delta Dart pilots never even saw the drones they were trying to shoot down, and only caught brief glimpses of them on radar. Further tests followed. In one, a Delta Dagger fired a burst of cannon fire at the drone, but the rounds missed. Before the pilot could line up for another shot, his jet engine flamed out because of the high altitude. He dropped to lower altitude to reignite the engine, at which point other planes mistook his aircraft for the target. Fortunately, they did not shoot, but the Fire Fly had escaped. Later on two Delta Darts achieved a radar lock on the Fire Fly, but not for long enough to fire a missile.

[…]

The military was unhappy with the results. Many felt the test was intended to make them look bad. Robert Schwanhausser of Teledyne Ryan says the results were classified Top Secret, and he was ordered to burn every piece of information on them.

[…]

They were sent on virtual suicide missions, to test Vietnamese radar and missile defenses.

When losses mounted, the developers at BIG SAFARI started equipping their drones with electronic bags of tricks. One device, known as High Altitude Threat Reaction and Countermeasure (HAT-RAC) responded to being lit up by radar by throwing the drone into a series of sharp turns.

[…]

When the Chinese downed their first Fire Fly in 1964, it was only after some sixteen MiGs had made over thirty passes trying to hit the little drone.

[…]

A decoy version of the Fire Fly was produced. This was known as the 147N and was fitted with radar reflectors to make it look like a bigger aircraft. The 147Ns were originally purely intended to distract defenders away from the real Fire Flies equipped with cameras, but they survived and managed to return so frequently that they were later fitted with cameras of their own.

[…]

On one mission, the pictures from a Fire Fly captured the subject’s faces from close range: “You could see features on the guy’s face. If it would have been in color, you could have seen the color of his eyes.”

This was at a time when the U-2 spy planes were taking pictures from fifty thousand feet or higher, with resolution only good enough to recognize objects two feet across. The low-level Fire Fly pictures were a revelation in the art of the possible.

[…]

The basic drone could only handle acceleration of about 3G, but a modified Firebee equipped with “Maneuverability Augmentation System for Tactical Air Combat Simulation” or MASTACS could pull 6G for several seconds at a time. This put it pretty much on a par with manned fighters. In 1971, the MASTACS developers challenged Commander John C. Smith, head of the Navy’s Top Gun combat training school – the “Top Gun” of the 1982 movie – to try and shoot MASTACS down.

Smith and his wingman, both flying F-4 Phantoms, made repeated attacks on the remotely controlled Firebee. It was far too agile for them. They fired two Sparrow radar-guided missiles and two Sidewinder heat-seekers without scoring a hit. Meanwhile, the Firebee kept circling around and lining itself up in firing position behind the Phantoms. Had it been armed, the Firebee would have had easy shots.

As usual, nobody liked a smart robot. MASTACS was deemed “too sophisticated” for training purposes.

[…]

Even the memory of the Fire Fly seems to have been lost. In 2014 the US Navy proudly announced in a press release that, “Truman will be the first aircraft carrier in naval aviation history to host test operations for an unmanned aircraft.” It seems that amnesia buried the 1969-70 Fire Fly operations from the USS Ranger, not to mention the TDR-1s flown from the USS Sable in 1943.

You can launch without regret

Friday, December 1st, 2023

Since its founding in 2017, Anduril has argued that it’s a new type of defense contractor:

Instead of taking orders upfront from the US Department of Defense to fund development of products, Anduril has raised money from venture capitalists, including Peter Thiel’s Founders Fund, that it uses to build weapons it predicts the military will want. Its first product was an automated security tower designed for the US border in the early days of Donald Trump’s presidency. The company then began shipping early counter-drone aircraft to the US and UK militaries in 2019.

[…]

Anduril started work two years ago on the Roadrunner, a Looney Tunes-inspired dig at Raytheon’s Coyote, because it said the US would need a lower-cost, more nimble way to combat swarms. The tiny fighter jet has a carbon-fiber body and onboard electronics that let it track objects and perform maneuvers that’d be too dangerous for a human-piloted plane. One of its main advantages is that it can be reused, which makes it easier to launch at the first sign of an unknown object. “If you see a threat, you can launch multiple Roadrunners to go out to do a closer inspection of that threat and be loitering in case they’re needed,” says Christian Brose, the chief strategy officer at Anduril. “You can recall them, land them, refuel them and reuse them, so, essentially, you can launch without regret.”

[…]

To start the test, Anduril sent a fixed-wing drone into the air from a runway behind its compound. The sentry tower quickly detected the aircraft and fed information about its speed and trajectory into the company’s Lattice software. The test pilot received imagery of the drone and then manually marked it as a hostile threat. In an instant, the lid of the Roadrunner launch container opened, the turbines fired up and the craft zipped into the air. It took off toward the target and then began feeding its own sensor data and imagery into Lattice. As the Roadrunner closed in on the target, the test pilot gave a final command to destroy the fixed-wing craft, and, seconds later, the Lattice software displayed information showing that it had been a successful attack.

For the purposes of this demonstration, Anduril used proximity sensors to confirm that it would have taken out the target and didn’t actually blow up the fixed-wing craft. If it had, the Roadrunner wouldn’t have been able to do what it did next: It turned to fly back toward the Anduril compound, shifted into a vertical position and fired its thrusters toward the ground as landing legs kicked out from its side. During a maneuver lasting about a minute, the machine got ever closer to the ground before finally settling gently on a small concrete pad in a fashion very similar to a Space Exploration Technologies Corp. rocket. A future version of the Roadrunner will be able to land even after destroying a target, Luckey says.

The whole idea, as Anduril sees it, is to allow a single operator to manage dozens or more Roadrunners in the field with Lattice providing a full view of the surroundings, targets and weapons available. If a drone swarm approaches a base, Lattice will quickly see and identify all the drones, and, with a couple of clicks, the operator can send Roadrunners off to combat the threat. This is a major change from many of the other counter-drone weapons that require about a dozen people to operate them.

Anduril has raised $2.7 billion to date and is valued at almost $10 billion.

Electrified trailer cuts fuel consumption in semi-trucks by 36.3%

Wednesday, November 29th, 2023

When hybrid vehicles were first catching on, I wondered if electrifying a semi-truck trailer would improve performance and efficiency:

Range Energy makes truck trailers, with a clever connection to any standard tractor cab, loaded with electric powertrains to turn any semi into an efficient hybrid. They also let you push entire trailers around by hand at the depot in “shopping cart mode.”

Range’s 53-foot (16-m) RA-01 trailer packs its own 200-kWh battery, as well as an 800-volt e-axle powertrain that can put up to 14,000 Nm (10,326 lb-ft) of torque, at up to 350 kW (469 hp), through the rear wheels. The same battery also feeds a rear liftgate and powered landing gear.

It works with any electric or diesel-powered cab and is perfectly suitable for fleet operations, without any modification to the trucks. It takes its cues from a smart kingpin, which basically senses the acceleration and braking loads that the tractor is putting on the trailer, and uses its electric motors to help out.

[…]

In fuel economy testing performed by Mesilla Valley Transportation Solutions, Range reports a fuel economy boost of 3.25 mpg (72.4 L/100km) , representing a 36.9% efficiency gain against the test truck’s standard fuel consumption.

[…]

The test was conducted on a “25.5-mile (41-km) urban/highway loop at approximately 59,000 lb (26,760 kg) gross vehicle weight and 60-mph (96.5-km/h) top speeds across multiple scenarios including stop/go and steady-speed portions.”The test was conducted on a “25.5-mile (41-km) urban/highway loop at approximately 59,000 lb (26,760 kg) gross vehicle weight and 60-mph (96.5-km/h) top speeds across multiple scenarios including stop/go and steady-speed portions.”

[…]

Even beyond that 200-mile range once the battery is completely depleted, Range still expects about a 10-15% efficiency boost over a regular trailer for the rest of the trip, simply through the energy it can capture and release through regenerative braking.

[…]

And then there’s “shopping cart mode” – which uses a similar control approach to let you disconnect a fully-loaded trailer from the truck and push it around manually like a hand trolley, with the electric motors helping all the way.

Losing one drone for one submarine was a good exchange rate

Monday, November 27th, 2023

Swarm Troopers by David HamblingIn the late 1950s, David Hambling notes (in Swarm Troopers), the latest sonar could detect a submarine more than twenty miles away, but the best anti-submarine weapons only had a range of a few miles:

The US Navy wanted to bridge the gap with a Drone Anti-Submarine Helicopter or DASH. This was a small helicopter capable of carrying a single weapon and dropping it at the required spot, guided by a controller back on board ship.

The DASH was based on a one-man helicopter called a “Rotorcycle” built by Gyrodyne Company. This had two rotor blades rotating in opposite directions for lift, and a propeller for forward motion. The drone version was the size of a small car and weighed just over a ton. By 1963, the US Navy had eighty of them.

[…]

DASH was designed to be expendable; when it dropped a Mk57 nuclear depth charge it would be within the lethal radius of the resulting explosion. The powerful warhead, from five to twenty kilotons, guaranteed that the sub would be destroyed, and losing one drone for one submarine was a good exchange rate. The idea that DASH should carry a non-nuclear homing torpedo and come back afterwards was a case of mission creep; according to the original design it was only supposed to make one flight.

[…]

Executive Officer Phil King of the USS Blue modified a DASH, adding a television camera for reconnaissance and gunnery direction. Known as SNOOPY missions, these involved the DASH flying out to find targets. The operator identified them via the television link, and the destroyer then opened up with its battery of five-inch guns. The drone operator could see where the shells were landing and tell the gunners how to adjust their aim.

Further developments followed, including NITE PANTHER and BLOW LOW versions equipped with additional fuel tanks for longer range, night-vision systems and airborne radar.

The next logical step was to convert the DASH from finding targets to attacking them. NITE GAZELLE, GUN SHIP, and ATTACK DRONE were all individual modified aircraft with a range of weaponry including a six-barreled minigun firing four thousand rounds a minute, grenade launchers, bomblet dispensers and bombs, as well as a laser designator for directing smart bombs. The idea was that drones with guns would deal with the ground defenses, leaving the way clear for the bomber drones to hit targets with pinpoint accuracy.

[…]

“It became quite evident that the Navy no longer wanted DASH and wanted to move onto LAMPS manned helicopters.”

LAMPS was the Light Airborne Multipurpose System, a new manned helicopter that would operate from destroyers and take over the role of DASH. Removing DASH from the picture meant there would be no competition, and nobody would be able to argue that LAMPS was unnecessary.

[…]

The LAMPS project became the SH-60 Sea Hawk, now a multibillion dollar success story.

Drop a howitzer on them

Wednesday, November 22nd, 2023

The GBU-28 is a 5,000-pound laser-guided “bunker busting” bomb:

It was designed, manufactured, and deployed in less than three weeks due to an urgent need during Operation Desert Storm to penetrate hardened Iraqi command centers located deep underground.

[…]

The GBU-28 is unique in that time between the finalized design being approved to its first use in combat test took only two weeks between the 13th and 27th of February 1991.

The name apparently refers to the fact that this Guided Bomb Unit was designed, built, and ready to drop in four weeks:

The initial batch of GBU-28s was built from modified 8 inch/203 mm artillery barrels (principally from deactivated M110 howitzers), but later examples are purpose-built with the BLU-113 bomb body made by National Forge of Irvine, Pennsylvania. They weigh 5,000 pounds (2,268 kg) and contain 630 pounds (286 kg) of Tritonal explosive.

[…]

It proved capable of penetrating over 50 meters (164 ft) of earth or 5 meters (16 ft) of solid concrete; this was demonstrated when a test bomb, bolted to a missile sled, smashed through 22 ft (6.7 m) of reinforced concrete and still retained enough kinetic energy to travel a half-mile downrange.

It looks more like a missile than a bomb:

F-15 Dropping GBU-28