Some of his ideas are mystical and sound really strange

Saturday, February 3rd, 2018

Arnold Kling has a few reasons for being less than fully bought into Jordan Peterson:

He is a spellbinding speaker but his first book, Maps of Meaning, was turgid. There is something disconcerting about the fact that his ideas seem to come across better in a format that allows for less editorial polishing. I noted this in December of 2016, when the Peterson tsunami was just forming.

Some of his ideas are mystical and sound really strange.

He gains some of his stature by attacking post-modernists who are intellectual weak, at least in the way that he presents them. For me, it is more impressive to take on stronger opponents than weaker ones.

He may now be over-rated by his fans on the right. But he is badly, badly, under-rated by smug leftists whose ability to understand opposing viewpoints pales in comparison with his.

Using the three-axes model, I put Peterson firmly in the conservative camp. He sees civilization as fragile and precious, and he is animated by the civilization vs. barbarism axis.

Project Plowshare

Saturday, February 3rd, 2018

Back in the “Atoms for Peace” era, the US’s Project Plowshare attempted to harness peaceful nuclear explosions for massive public works. The first test, Project Gnome, took place roughly 40 km (25 mi) southeast of Carlsbad, New Mexico, in an area of salt and potash mines along with oil and gas wells:

It was learned during the 1957 Plumbbob-Rainier tests that an underground nuclear detonation created large quantities of heat as well as radioisotopes, but most would quickly become trapped in the molten rock and become unusable as the rock resolidifed. For this reason, it was decided that Gnome would be detonated in bedded rock salt. The plan was to then pipe water through the molten salt and use the generated steam to produce electricity. The hardened salt could be subsequently dissolved in water in order to extract the radioisotopes. Gnome was considered extremely important to the future of nuclear science because it could show that nuclear weapons might be used in peaceful applications. The Atomic Energy Commission invited representatives from various nations, the U.N., the media, interested scientists and some Carlsbad residents.

“We’re going to set off an atomic bomb in a cave. You wanna come?”

Gnome was placed 361 m (1,184 ft) underground at the end of a 340 m (1,115 ft) tunnel that was supposed to be self-sealing upon detonation. Gnome was detonated on 10 December 1961, with a yield of 3.1 kilotons. Even though the Gnome shot was supposed to seal itself, the plan did not quite work. Two to three minutes after detonation, smoke and steam began to rise from the shaft. Consequently, some radiation was released and detected off site, but it quickly decayed.

The cavity volume was calculated to be 28,000 ± 2,800 cubic meters with an average radius of 17.4 m in the lower portion measured. The Gnome detonation created a cavity about 170 ft (52 m) wide and almost 90 ft (27 m) high with a floor of melted rock and salt. A new shaft was drilled near the original and, on 17 May 1962, crews entered the Gnome Cavity. Even though almost six months had passed since the detonation, the temperature inside the cavity was still around 140 °F (60 °C). Inside, they found stalactites made of melted salt, as well as the walls of the cavity covered in salt. The intense radiation of the detonation colored the salt multiple shades of blue, green, and violet. Nonetheless, the explorers encountered only 5 milliroentgen, and it was considered safe for them to enter the cavern and cross its central rubble pile. While the three-kiloton explosion had melted 2400 tons of salt, the explosion had caused the collapse of the sides and top of the chamber, adding 28,000 tons of rubble that mixed with the molten salt and rapidly reduced its temperature. This was the reason the drilling program had originally been unsuccessful, finding temperatures of only 200 F, without high pressure steam, though the boreholes had encountered occasional pockets of molten salt at up to 1450 F deeper amid the rubble.

Today, all that exists on the surface to show what occurred below is a small concrete monument with two weathered and slightly vandalized plaques.

Other proposals under Project Plowshare included widening the Panama Canal, constructing a new sea-level waterway through Nicaragua nicknamed the Pan-Atomic Canal, cutting paths through mountainous areas for highways, and connecting inland river systems.

No mention of draining the Mediterranean though.

(Hat tip to commenter Sam J.)

Jordan Peterson returns to the Joe Rogan Experience

Friday, February 2nd, 2018

Jordan Peterson came back on Joe Rogan’s show (Joe Rogan Experience #1070), and I recommend watching (or simply listening):

Brain cells share information with virus-like capsules

Friday, February 2nd, 2018

We still don’t know how the brain works. For instance, we only recently learned that brain cells share information with virus-like capsules:

When Jason Shepherd first saw the structures under a microscope, he thought they looked like viruses. The problem was: he wasn’t studying viruses.

Shepherd studies a gene called Arc which is active in neurons, and plays a vital role in the brain. A mouse that’s born without Arc can’t learn or form new long-term memories. If it finds some cheese in a maze, it will have completely forgotten the right route the next day. “They can’t seem to respond or adapt to changes in their environment,” says Shepherd, who works at the University of Utah, and has been studying Arc for years. “Arc is really key to transducing the information from those experiences into changes in the brain.”

Despite its importance, Arc has been a very difficult gene to study. Scientists often work out what unusual genes do by comparing them to familiar ones with similar features—but Arc is one-of-a-kind. Other mammals have their own versions of Arc, as do birds, reptiles, and amphibians. But in each animal, Arc seems utterly unique—there’s no other gene quite like it. And Shepherd learned why when his team isolated the proteins that are made by Arc, and looked at them under a powerful microscope.

He saw that these Arc proteins assemble into hollow, spherical shells that look uncannily like viruses. “When we looked at them, we thought: What are these things?” says Shepherd. They reminded him of textbook pictures of HIV, and when he showed the images to HIV experts, they confirmed his suspicions. That, to put it bluntly, was a huge surprise. “Here was a brain gene that makes something that looks like a virus,” Shepherd says.

That’s not a coincidence. The team showed that Arc descends from an ancient group of genes called gypsy retrotransposons, which exist in the genomes of various animals, but can behave like their own independent entities.* They can make new copies of themselves, and paste those duplicates elsewhere in their host genomes. At some point, some of these genes gained the ability to enclose themselves in a shell of proteins and leave their host cells entirely. That was the origin of retroviruses—the virus family that includes HIV.

So, Arc genes are the evolutionary cousins of these viruses, which explains why they produce shells that look so similar. Specifically, Arc is closely related to a viral gene called gag, which retroviruses like HIV use to build the protein shells that enclose their genetic material. Other scientists had noticed this similarity before. In 2006, one team searched for human genes that look like gag, and they included Arc in their list of candidates. They never followed up on that hint, and “as neuroscientists, we never looked at the genomic papers so we didn’t find it until much later,” says Shepherd.

The similarities don’t end there. When genes are activated, the instructions encoded within their DNA are first transcribed into a related molecule called RNA. Shepherd’s colleague Elissa Pastuzyn showed that the Arc shells can enclose RNA and move it from one neuron to another. And that’s basically what retroviruses do—they use protein shells to protect their own RNA as it moves between cells in a host.

Private gun ownership in Kenya

Thursday, February 1st, 2018

Alan Kasujja of the BBC World Service visited a gun range near Nairobi, Kenya to interview Anthony Wahome, chair of the [Kenyan] National Gun Owners Association and a former police officer, about private gun ownership.

Two things stood out. First, there are roughly 10,000 legally owned firearms in Kenya, versus 700,000 not-so-legally owned firearms. He points out that most of those are in the semi-arid regions, where cattle rustling is a problem. Second, he was at a shooting competition when news started coming in that the Westgate mall was under attack. They stopped the competition and decided to go to the mall to help. I was wondering why armed citizens were at the mall in shooting vests covered in IDPA patches. (The Kenyan police and military are not held in high esteem, by the way.)

Its rules are designed with one eye on how those rules might be exploited down the line

Thursday, February 1st, 2018

Steven Johnson looks beyond the Bitcoin bubble:

History is replete with stories of new technologies whose initial applications end up having little to do with their eventual use. All the focus on Bitcoin as a payment system may similarly prove to be a distraction, a technological red herring. Nakamoto pitched Bitcoin as a “peer-to-peer electronic-cash system” in the initial manifesto, but at its heart, the innovation he (or she or they) was proposing had a more general structure, with two key features.

First, Bitcoin offered a kind of proof that you could create a secure database — the blockchain — scattered across hundreds or thousands of computers, with no single authority controlling and verifying the authenticity of the data.

Second, Nakamoto designed Bitcoin so that the work of maintaining that distributed ledger was itself rewarded with small, increasingly scarce Bitcoin payments. If you dedicated half your computer’s processing cycles to helping the Bitcoin network get its math right — and thus fend off the hackers and scam artists — you received a small sliver of the currency. Nakamoto designed the system so that Bitcoins would grow increasingly difficult to earn over time, ensuring a certain amount of scarcity in the system. If you helped Bitcoin keep that database secure in the early days, you would earn more Bitcoin than later arrivals. This process has come to be called “mining.”

[...]

Token economies introduce a strange new set of elements that do not fit the traditional models: instead of creating value by owning something, as in the shareholder equity model, people create value by improving the underlying protocol, either by helping to maintain the ledger (as in Bitcoin mining), or by writing apps atop it, or simply by using the service. The lines between founders, investors and customers are far blurrier than in traditional corporate models; all the incentives are explicitly designed to steer away from winner-take-all outcomes. And yet at the same time, the whole system depends on an initial speculative phase in which outsiders are betting on the token to rise in value.

“You think about the ’90s internet bubble and all the great infrastructure we got out of that,” Dixon says. “You’re basically taking that effect and shrinking it down to the size of an application.”

[...]

So much of the blockchain’s architecture is shaped by predictions about how that architecture might be abused once it finds a wider audience. That is part of its charm and its power. The blockchain channels the energy of speculative bubbles by allowing tokens to be shared widely among true supporters of the platform. It safeguards against any individual or small group gaining control of the entire database. Its cryptography is designed to protect against surveillance states or identity thieves. In this, the blockchain displays a familial resemblance to political constitutions: Its rules are designed with one eye on how those rules might be exploited down the line.

Much has been made of the anarcho-libertarian streak in Bitcoin and other nonfiat currencies; the community is rife with words and phrases (“self-sovereign”) that sound as if they could be slogans for some militia compound in Montana. And yet in its potential to break up large concentrations of power and explore less-proprietary models of ownership, the blockchain idea offers a tantalizing possibility for those who would like to distribute wealth more equitably and break up the cartels of the digital age.

The blockchain worldview can also sound libertarian in the sense that it proposes nonstate solutions to capitalist excesses like information monopolies. But to believe in the blockchain is not necessarily to oppose regulation, if that regulation is designed with complementary aims. Brad Burnham, for instance, suggests that regulators should insist that everyone have “a right to a private data store,” where all the various facets of their online identity would be maintained. But governments wouldn’t be required to design those identity protocols. They would be developed on the blockchain, open source. Ideologically speaking, that private data store would be a true team effort: built as an intellectual commons, funded by token speculators, supported by the regulatory state.

Like the original internet itself, the blockchain is an idea with radical — almost communitarian — possibilities that at the same time has attracted some of the most frivolous and regressive appetites of capitalism. We spent our first years online in a world defined by open protocols and intellectual commons; we spent the second phase in a world increasingly dominated by closed architectures and proprietary databases. We have learned enough from this history to support the hypothesis that open works better than closed, at least where base-layer issues are concerned. But we don’t have an easy route back to the open-protocol era. Some messianic next-generation internet protocol is not likely to emerge out of Department of Defense research, the way the first-generation internet did nearly 50 years ago.

Yes, the blockchain may seem like the very worst of speculative capitalism right now, and yes, it is demonically challenging to understand. But the beautiful thing about open protocols is that they can be steered in surprising new directions by the people who discover and champion them in their infancy. Right now, the only real hope for a revival of the open-protocol ethos lies in the blockchain. Whether it eventually lives up to its egalitarian promise will in large part depend on the people who embrace the platform, who take up the baton, as Juan Benet puts it, from those early online pioneers. If you think the internet is not working in its current incarnation, you can’t change the system through think-pieces and F.C.C. regulations alone. You need new code.