Civil Defense structures were originally planned as part of the Interstate Highway System. There were to be fallout and partial blast shelters under most of the approach ramps. This would have been easy to do as part of the construction, and a few model shelters were actually built as a demonstration.
[...]
The Triad is composed of manned bombers, submarine launched ballistic missiles (SLBM), and land-based intercontinental ballistic missiles (ICBM). Prior to the ICBM leg we had Snark, an air-breathing pilotless aircraft capable of flying intercontinental distances—an early “cruise missile.”
Each leg, then, depends on a different mechanism for survival. The manned bomber is very soft; it can be killed on the ground by nukes landing a long way off. It depends for early survival on warning: unlike the other two legs of the Triad, the manned bombers can be launched at an early stage of alert and still be recalled.
[...]
(I helped work on updates to the B-52 as my first aerospace job.)
[...]
One USAF colonel recently described a B-52 as “a mass of parts flying in loose formation.”
[...]
Even if the bombers can penetrate, they’re not useful for fighting a nuclear war. You can’t send the bombers to attack Soviet missile bases; there’d be nothing to hit but empty holes by the time a subsonic bomber got to the target.
[...]
Cruise missiles can be an excellent supplement to the strategic force, but they are certainly not a potential leg of the Triad. They are vulnerable to everything that kills airplanes (on the ground or in the air) without the recall advantages of manned aircraft.
The second leg of the Triad is the submarine. Its survival depends entirely on concealment. If you can locate a submarine to within a few miles, it can be killed by an ICBM carrying an H-bomb.
[...]
Note, by the way, that all the subs in harbor — up to a third of them, sometimes more — are dead the day the war starts.
[...]
Unfortunately, the submarine’s concealment isn’t what it used to be. Subs can be located in at least two ways. First, by tracking them from their bases; every submariner can tell you stories about playing tag with the Russkis when they leave Holy Loch.
Worse, though, the oceans aren’t nearly so opaque as we thought. Not long ago we took a look at some radar pictures made from a satellite. “Look at that,” one of the engineers said. “You can see stuff down in the ocean! Deep in the ocean.” And sure enough, using “synthetic aperture” radars, the oceans have become somewhat transparent down to about fifty meters. While the subs can go deeper than that, they can’t launch from deeper than that.
[...]
Incidentally, as I write this, a Soviet naval surveillance satellite is about to fall. It carried a 100 kilowatt nuclear power plant. The United States has yet to put a ten kilowatt satellite into orbit.
[...]
Submarines have to launch their missiles from unpredictable places (by definition; imagine what the KGB would pay to find out where our subs would launch from), and this drastically limits their accuracy.
[...]
Suppose one morning the Soviets knock out our Minutemen installations (not too difficult, as we’ll see in a bit) and many of our subs. They still have quite a few birds left. The Red Army is marching into Germany. The hot line chatters, and the message is pretty simple: “You haven’t really been hurt. Most of your cities are in good shape. Cool it, or we launch the rest of our force.”
At that point it would be useful to have something capable of knocking out the rest of their strategic force.
To have that capability, you need land-based missiles. To be exact, you need MX. MX, and only MX, has both the accuracy and the Multiple Independently Targetable Re-entry Vehicles (MIRVS, and they’re different from multiple warheads; MIRVS can attack targets much farther apart) that might give some counterforce capability.
[...]
If you attack a target with an ICBM, your “single shot probability of kill” (PKSS) depends on three major factors: attacker’s yield, attacker’s accuracy, and hardness of target.
[...]
While there are classified refinements, all the numbers you really need have long since been published in the US Government Printing Office’s “The Effects of Nuclear Weapons”. They’ve even been put on a circular slide rule that the RAND Corporation used to sell for about a dollar in the 60’s.
[...]
The Minutemen Missile lies in a soil that’s officially hardened to 300 PSI. When we put in Minutemen—the last one was installed in the 60’s—it was no bad guess that the Soviets could throw a megaton with a CEP of about a nautical mile. This gave them a PKSS of about .09, and it would take more than 20 warheads to give better than .9 kill probability. That was obviously a stable situation.[...]Going to ten megatons puts the PKSS to about 35%, and it still takes more than five attackers to get a 90% chance of killing one Minuteman; still not a lot to worry about.
Changes in accuracy, on the other hand, are very significant. Cutting the CEP in half (well, to 2700 feet) gives one megaton the same kill probability as ten had for a mile. Cutting CEP to 1000 feet is more drastic yet: now the single shot kill probability of one megaton is above 90%.
If you can get your accuracy to 600 feet CEP, then a 500 kiloton weapon has above 99% kill probability. Now all you need is multiple warheads, and you’re able to knock out more birds than you launched. Clearly this is getting unstable.
In 1964 we figured the Soviets had 6000 foot CEP, and predicted that by 1975 they’d have 600 feet. By 1975 I’d given up my clearances, and I don’t know what they achieved.
[...]
Item: weather satellites; winds over target are predictable, so you can correct for them. Item: lots of polar-orbiting satellites; by studying them, you can map gravitational anomalies. Item: observation satellites; location errors just aren’t significant any more. Item: the Soviets have been buying gyros, precision lathes, etc., as well as computers. They already had the mathematicians.
[...]
Two: in the 60’s we studied lots and lots of mobile basing schemes: road mobile, rail mobile, off-road mobile, canal and barge mobile, ship mobile, etc. We even looked at artificial ponds, and things that crawled around on the bottom of Lake Michigan. There were a lot of people in favor of mobile systems — then. Now, though, there are satellites, and you know, it’s just damned hard to hide something seventy feet long and weighing 190,000 pounds. (Actually, by the time you add the launcher, it’s more like 200 feet and 500,000 pounds.)
[...]
Worse, you can’t harden a mobile system very much. Even a “small” ICBM rocket is a pretty big object. Twenty PSI would probably be more than we could achieve. The kill radius of a 50 megaton weapon against a 20 PSI target is very large: area bombardment becomes attractive.
[...]
And nearly every mobile basing scheme puts nukes out where they have to be protected from terrorists and saboteurs including well-meaning US citizens aroused in protest (and you just know there’ll be plenty of them).
Air-mobile and air-launched were long-term favorites, and I was much for them in the 60’s. The Pentagon’s most recent analysis says we just can’t afford them; it would cost in the order of $150 billion, possibly more.
[...]
In fact, every alternative you’ve ever heard of, and a few you haven’t, were analyzed in great detail back in 1964. I know, because I was editor of the final report. I even invented one scheme myself, Citadel, which would put some birds as well as a national command post under a granite mountain. The problem with that one is that the birds will survive, but if they attack the doors, how does it get out after the attack?
[...]
First try the obvious: harden your birds. In 1964 we called it “Superhard,” 5000 PSI basing. Now 5000 PSI isn’t easy to come by. There are severe engineering problems, and it isn’t cheap. Worse, “Superhard” didn’t buy all that much: at 500 foot CEP’s a megaton has a 95% chance of killing “superhard” targets. (A megaton weapon makes a crater 250 feet deep and over a thousand feet in diameter even in hard rock.) Thus putting MX in 5000 PSI silos separated by miles didn’t seem worth the cost.
[...]
Just about every honest analyst who takes the trouble to work through the numbers comes away muttering “That’s a goofy sounding scheme, but damned if it doesn’t look like it might work…”
[...]
Use the space environment and our lead in high technology to construct missile defenses. They won’t be perfect, but they won’t need to be: the enemy can’t know how good our defenses are. Thus he can’t be sure of the outcome of his strike.
[...]
Whether space research pays for itself fifteen times over, as space enthusiasts say, or only twice over, as its critics say, nearly everyone is agreed that it does pay for itself — which is more than you can say for most other parts of the budget.
If we fail to provide for the common defense, it does no good to promote the general welfare.