How Palmer Luckey Created Oculus Rift

Monday, October 20th, 2014

If there is a case to be made that unconventional schooling, without busywork or fixed schedules, helps unleash creativity, Palmer Luckey, creator of the Oculus Rift, might well be Exhibit A for the prosecution:

His mother, Julie, home-schooled all four of her children during a period of each of their childhoods (Luckey’s father, Donald, is a car salesman), but Palmer was the only one of the kids who never went back; he liked the flexibility too much. In his ample free time, he devoted most of his considerable energy to teaching himself how to build electronics from scratch.

No one else in Luckey’s family was especially interested in technology, but his parents were happy to give over half of the garage at their Long Beach, California, home to his experiments. There, Luckey quickly progressed from making small electronics to “high-voltage stuff” like lasers and electromagnetic coilguns. Inevitably, there were mishaps. While working on a live Tesla coil, Luckey once accidentally touched a grounded metal bed frame, and blew himself across the garage; another time, while cleaning an infrared laser, he burned a gray spot into his vision.

When Luckey was 15, he started “modding” video game equipment: taking consoles like the Nintendo GameCube, disassembling them, and modifying them with newer parts, to transform them into compact, efficient and hand-crafted devices. “Modding was more interesting than just building things entirely using new technologies,” Luckey told me. “It was this very special type of engineering that required deeply understanding why people had made the decisions they made in designing the hardware.”

Luckey soon became obsessed with PC gaming. How well, he wondered, could he play games? “Not skill level,” he clarified to me, “but how good could the experience be?” By this time, Luckey was making good money fixing broken iPhones, and he spent most of it on high-end gaming equipment in order to make the experience as immersive as possible. At one point, his standard gaming setup consisted of a mind-boggling six-monitor arrangement. “It was so sick,” he recalled.

But it wasn’t enough. Luckey didn’t just want to play on expensive screens; he wanted to jump inside the game itself. He knew the military sometimes trained soldiers using virtual reality headsets, so he set out to buy some — on the cheap, through government auctions. “You’d read that these VR systems originally cost hundreds of thousands of dollars, and you thought, clearly if they’re that expensive, they must be really good,” Luckey said. Instead, they fell miles short of his hopes. The field of view on one headset might be so narrow that he’d feel as if he was looking through a half-opened door. Another might weigh ten pounds, or have preposterously long lag between his head moving and the image reacting onscreen — a feature common to early VR that literally makes users nauseated.

So Luckey decided to do what he’d been doing for years with game consoles: He’d take the technology apart, figure out where it was falling short and modify it with new parts to improve it. Very quickly, he realized that this wasn’t going to be simple. “It turned out that a lot of the approaches the old systems were taking were dead ends,” he said.

The problem was one of fundamental design philosophy. In order to create the illusion of a three-dimensional digital world from a single flat screen, VR manufacturers had typically used complex optical apparatuses that magnified the onscreen image to fill the user’s visual field while also correcting for any distortion. Because these optics had to perform a variety of elaborate tricks to make the magnified image seem clear, they were extremely heavy and costly to produce.

Luckey’s solution to this dilemma was ingeniously simple. Why use bulky, expensive optics, he thought, when he could put in cheap, lightweight lenses and then use software to distort the image, so that it came out clear through them? Plus, he quickly realized that he could combine these lenses with screens from mobile phones, which the smartphone arms race had made bigger, crisper and less expensive than ever before. “That let me make something that was a lot lighter and cheaper, with a much wider field of view, than anything else out there,” he said.

From 2009 to 2012, while also taking college classes and working at the University of Southern California’s VR-focused Institute for Creative Technologies, Luckey poured countless hours into creating a working prototype from this core vision. He tinkered with different screens, mixed and matched parts from his collection of VR hardware, and refined the motion tracking equipment, which monitored the user’s head movements in real-time. Amazingly, considering the eventual value of his invention, Luckey was also posting detailed reports about his work to a 3-D gaming message board. The idea was sitting there for anyone to steal.

But, as Brendan Iribe put it to me, “Maybe his name is Luckey for a reason.” By that point, no one was interested in throwing more money away on another doomed virtual reality project.

Then, in early 2012, luck struck again when the legendary video game programmer John Carmack stumbled onto his work online and asked Luckey if he could buy one of his prototypes. Luckey sent him one for free. “I played it super cool,” he assured me. Carmack returned the favor in a big way: At that June’s E3 convention — the game industry’s gigantic annual commercial carnival — he showed off the Rift prototype to a flock of journalists, using a repurposed version of his hit game “Doom 3” for the demonstration. The response was immediate and ecstatic. “I was in Boston at a display conference at the time,” Luckey said, “and people there were like, ‘Dude, Palmer, everyone’s writing articles about your thing!’”

The rest, as they say, is virtual history: Over the next 21 months, Luckey partnered with Iribe, Antonov and Mitchell, launched a Kickstarter campaign that netted $2.4 million in funding — nearly ten times its initial goal — and joined the Facebook empire, thereby ensuring the company the kind of financial backing that most early-stage tech companies can only dream of.

The Oculus Rift is now entering its final stages of development — it’s slated for commercial release next year — and this fall Samsung will release a scaled-down product for developers and enthusiasts, powered by Oculus technology, that will clip over the company’s Galaxy Note 4 smartphone. But Luckey knows that success is by no means assured. “To this point, there has never been a successful commercial VR product, ever,” Luckey told me. “Nobody’s actually managed to pull this off.” Spend a few minutes inside the Rift, though, and one can’t help but believe that Luckey will be the one to do it.

Leave a Reply