Regenerating a Mammoth for $10 Million

Friday, November 21st, 2008

There’s talk of Regenerating a Mammoth for $10 Million, which really isn’t all that expensive:

A scientific team headed by Stephan C. Schuster and Webb Miller at Pennsylvania State University reports in Thursday’s issue of Nature that it has recovered a large fraction of the mammoth genome from clumps of mammoth hair. Mammoths, ice-age relatives of the elephant, were hunted by the modern humans who first learned to inhabit Siberia some 22,000 years ago. The mammoths fell extinct in both their Siberian and North American homelands toward the end of the last ice age, some 10,000 years ago.

Dr. Schuster and Dr. Miller said there was no technical obstacle to decoding the full mammoth genome, which they believe could be achieved for a further $2 million. They have already been able to calculate that the mammoth’s genes differ at some 400,000 sites on its genome from that of the African elephant.

There is no present way to synthesize a genome-size chunk of mammoth DNA, let alone to develop it into a whole animal. But Dr. Schuster said a shortcut would be to modify the genome of an elephant’s cell at the 400,000 or more sites necessary to make it resemble a mammoth’s genome. The cell could be converted into an embryo and brought to term by an elephant, a project he estimated would cost some $10 million. “This is something that could work, though it will be tedious and expensive,” he said.

There have been several Russian attempts to cultivate eggs from frozen mammoths that look so perfectly preserved in ice. But the perfection is deceiving since the DNA is always degraded and no viable cells remain. Even a genome-based approach would have been judged entirely impossible a few years ago and is far from reality even now.

Still, several technical barriers have fallen in surprising ways. One barrier was that ancient DNA is always shredded into tiny pieces, seemingly impossible to analyze. But a new generation of DNA decoding machines use tiny pieces as their starting point. Dr. Schuster’s laboratory has two, known as 454 machines, each of which costs $500,000.

Another problem has been that ancient DNA in bone, the usual source, is heavily contaminated with bacterial DNA. Dr. Schuster has found that hair is a much purer source of the host’s DNA, with the keratin serving to seal it in and largely exclude bacteria.

A third issue is that the DNA of living cells can be modified only very laboriously and usually at one site at a time. Dr. Schuster said he had been in discussion with George Church, a well-known genome technologist at Harvard Medical School, about a new method Dr. Church has invented for modifying some 50,000 genomic sites at a time.

Leave a Reply