How a Radical New Teaching Method Could Unleash a Generation of Geniuses

Sunday, December 8th, 2013

With standard hyperbole, Joshua Davis describes how a radical new teaching method could unleash a generation of geniuses:

In 1999, Sugata Mitra was chief scientist at a company in New Delhi that trains software developers. His office was on the edge of a slum, and on a hunch one day, he decided to put a computer into a nook in a wall separating his building from the slum. He was curious to see what the kids would do, particularly if he said nothing. He simply powered the computer on and watched from a distance. To his surprise, the children quickly figured out how to use the machine.

Over the years, Mitra got more ambitious. For a study published in 2010, he loaded a computer with molecular biology materials and set it up in Kalikuppam, a village in southern India. He selected a small group of 10- to 14-year-olds and told them there was some interesting stuff on the computer, and might they take a look? Then he applied his new pedagogical method: He said no more and left.

Over the next 75 days, the children worked out how to use the computer and began to learn. When Mitra returned, he administered a written test on molecular biology. The kids answered about one in four questions correctly. After another 75 days, with the encouragement of a friendly local, they were getting every other question right. “If you put a computer in front of children and remove all other adult restrictions, they will self-organize around it,” Mitra says, “like bees around a flower.”

A charismatic and convincing proselytizer, Mitra has become a darling in the tech world. In early 2013 he won a $1 million grant from TED, the global ideas conference, to pursue his work. He’s now in the process of establishing seven “schools in the cloud,” five in India and two in the UK. In India, most of his schools are single-room buildings. There will be no teachers, curriculum, or separation into age groups — just six or so computers and a woman to look after the kids’ safety. His defining principle: “The children are completely in charge.”

Mitra argues that the information revolution has enabled a style of learning that wasn’t possible before. The exterior of his schools will be mostly glass, so outsiders can peer in. Inside, students will gather in groups around computers and research topics that interest them. He has also recruited a group of retired British teachers who will appear occasionally on large wall screens via Skype, encouraging students to investigate their ideas — a process Mitra believes best fosters learning. He calls them the Granny Cloud. “They’ll be life-size, on two walls” Mitra says. “And the children can always turn them off.”

Mitra’s work has roots in educational practices dating back to Socrates. Theorists from Johann Heinrich Pestalozzi to Jean Piaget and Maria Montessori have argued that students should learn by playing and following their curiosity. Einstein spent a year at a Pestalozzi-inspired school in the mid-1890s, and he later credited it with giving him the freedom to begin his first thought experiments on the theory of relativity. Google founders Larry Page and Sergey Brin similarly claim that their Montessori schooling imbued them with a spirit of independence and creativity.

In recent years, researchers have begun backing up those theories with evidence. In a 2011 study, scientists at the University of Illinois at Urbana-Champaign and the University of Iowa scanned the brain activity of 16 people sitting in front of a computer screen. The screen was blurred out except for a small, movable square through which subjects could glimpse objects laid out on a grid. Half the time, the subjects controlled the square window, allowing them to determine the pace at which they examined the objects; the rest of the time, they watched a replay of someone else moving the window. The study found that when the subjects controlled their own observations, they exhibited more coordination between the hippocampus and other parts of the brain involved in learning and posted a 23 percent improvement in their ability to remember objects. “The bottom line is, if you’re not the one who’s controlling your learning, you’re not going to learn as well,” says lead researcher Joel Voss, now a neuroscientist at Northwestern University.

In 2009, scientists from the University of Louisville and MIT’s Department of Brain and Cognitive Sciences conducted a study of 48 children between the ages of 3 and 6. The kids were presented with a toy that could squeak, play notes, and reflect images, among other things. For one set of children, a researcher demonstrated a single attribute and then let them play with the toy. Another set of students was given no information about the toy. This group played longer and discovered an average of six attributes of the toy; the group that was told what to do discovered only about four. A similar study at UC Berkeley demonstrated that kids given no instruction were much more likely to come up with novel solutions to a problem. “The science is brand-new, but it’s not as if people didn’t have this intuition before,” says coauthor Alison Gopnik, a professor of psychology at UC Berkeley.

Gopnik’s research is informed in part by advances in artificial intelligence. If you program a robot’s every movement, she says, it can’t adapt to anything unexpected. But when scientists build machines that are programmed to try a variety of motions and learn from mistakes, the robots become far more adaptable and skilled. The same principle applies to children, she says.

Evolutionary psychologists have also begun exploring this way of thinking. Peter Gray, a research professor at Boston College who studies children’s natural ways of learning, argues that human cognitive machinery is fundamentally incompatible with conventional schooling. Gray points out that young children, motivated by curiosity and playfulness, teach themselves a tremendous amount about the world. And yet when they reach school age, we supplant that innate drive to learn with an imposed curriculum. “We’re teaching the child that his questions don’t matter, that what matters are the questions of the curriculum. That’s just not the way natural selection designed us to learn. It designed us to solve problems and figure things out that are part of our real lives.”

Some school systems have begun to adapt to this new philosophy — with outsize results. In the 1990s, Finland pared the country’s elementary math curriculum from about 25 pages to four, reduced the school day by an hour, and focused on independence and active learning. By 2003, Finnish students had climbed from the lower rungs of international performance rankings to first place among developed nations.

Nicholas Negroponte, cofounder of the MIT Media Lab, is taking this approach even further with his One Laptop per Child initiative. Last year the organization delivered 40 tablets to children in two remote villages in Ethiopia. Negroponte’s team didn’t explain how the devices work or even open the boxes. Nonetheless, the children soon learned to play back the alphabet song and taught themselves to write letters. They also figured out how to use the tablet’s camera. This was impressive because the organization had disabled camera usage. “They hacked Android,” Negroponte says.


  1. Bob Sykes says:

    Yet another education scam.

  2. Lucklucky says:

    Children are different. This is a very difficult concept to grasp for adults, even those that supposedly support market freedom and liberty. This school might be good for some children. For others might be a disaster.

    There should be many schools not The School. The School is a Totalitarian concept, against redundancy, against difference, it is usually a crime against many good children specially the intelligent ones. Difference should be promoted.

Leave a Reply