Artificial Bone

Tuesday, July 2nd, 2013

Materials researchers are turning to bone for inspiration:

Bone is strong and tough because its two constituent materials, soft collagen protein and stiff hydroxyapatite mineral, are arranged in complex hierarchical patterns that change at every scale of the composite, from the micro up to the macro.

[...]

In a paper published online June 17 in Advanced Functional Materials, associate professor Markus Buehler of the Department of Civil and Environmental Engineering and co-authors describe their approach. Using computer-optimized designs of soft and stiff polymers placed in geometric patterns that replicate nature’s own patterns, and a 3-D printer that prints with two polymers at once, the team produced samples of synthetic materials that have fracture behavior similar to bone. One of the synthetics is 22 times more fracture-resistant than its strongest constituent material, a feat achieved by altering its hierarchical design.

The collagen in bone is too soft and stretchy to serve as a structural material, and the mineral hydroxyapatite is brittle and prone to fracturing. Yet when the two combine, they form a remarkable composite capable of providing skeletal support for the human body. The hierarchical patterns help bone withstand fracturing by dissipating energy and distributing damage over a larger area, rather than letting the material fail at a single point.

“The geometric patterns we used in the synthetic materials are based on those seen in natural materials like bone or nacre, but also include new designs that do not exist in nature,” says Buehler, who has done extensive research on the molecular structure and fracture behavior of biomaterials. His co-authors are graduate students Leon Dimas and Graham Bratzel, and Ido Eylon of the 3-D printer manufacturer Stratasys. “As engineers we are no longer limited to the natural patterns. We can design our own, which may perform even better than the ones that already exist.”

The researchers created three synthetic composite materials, each of which is one-eighth inch thick and about 5-by-7 inches in size. The first sample simulates the mechanical properties of bone and nacre (also known as mother of pearl). This synthetic has a microscopic pattern that looks like a staggered brick-and-mortar wall: A soft black polymer works as the mortar, and a stiff blue polymer forms the bricks. Another composite simulates the mineral calcite, with an inverted brick-and-mortar pattern featuring soft bricks enclosed in stiff polymer cells. The third composite has a diamond pattern resembling snakeskin. This one was tailored specifically to improve upon one aspect of bone’s ability to shift and spread damage.

Leave a Reply