How a Guy From a Montana Trailer Park Overturned 150 Years of Biology

Saturday, January 7th, 2017

Toby Spribille grew up in a Montana trailer park, where he was educated by a fundamentalist cult, before somehow getting into a German university and then overturning 150 years of biology:

He joined the lab of symbiosis specialist John McCutcheon, who convinced him to supplement his formidable natural history skills with some know-how in modern genetics.

The duo started studying two local lichens that are common in local forests and hang from branches like unruly wigs. One is yellow because it makes a strong poison called vulpinic acid; the other lacks this toxin and is dark brown. They clearly look different, and had been classified as separate species for almost a century. But recent studies had suggested that they’re actually the same fungus, partnered with the same alga. So why are they different?

To find out, Spribille analyzed which genes the two lichens were activating. He found no differences. Then, he realized that he was searching too narrowly. Lichenologists all thought that the fungi in the partnership belonged to a group called the ascomycetes — so Spribille had only searched for ascomycete genes. Almost on a whim, he broadened his search to the entire fungal kingdom, and found something bizarre. A lot of the genes that were activated in the lichens belonged to a fungus from an entirely different group — the basidiomycetes. “That didn’t look right,” says McCutcheon. “It took a lot of time to figure out.”

At first, the duo figured that a basidiomycete fungus was growing on the lichens. Perhaps it was just a contaminant, a speck of microbial fluff that had landed on the specimens. Or it might have been a pathogen, a fungus that was infecting the lichens and causing disease. It might simply have been a false alarm. (Such things happen: genetic algorithms have misidentified plague bacteria on the New York subway, platypuses in Virginia tomato fields, and seals in Vietnamese forests.)

But when Spribille removed all the basidiomycete genes from his data, everything that related to the presence of vulpinic acid also disappeared. “That was the eureka moment,” he says. “That’s when I leaned back in my chair.” That’s when he began to suspect that the basidiomycete was actually part of the lichens — present in both types, but especially abundant in the yellow toxic one.

And not just in these two types, either. Throughout his career, Spribille had collected some 45,000 samples of lichens. He began screening these, from many different lineages and continents. And in almost all the macrolichens — the world’s most species-rich group — he found the genes of basidiomycete fungi. They were everywhere. Now, he needed to see them with his own eyes.

Down a microscope, a lichen looks like a loaf of ciabatta: it has a stiff, dense crust surrounding a spongy, loose interior. The alga is embedded in the thick crust. The familiar ascomycete fungus is there too, but it branches inwards, creating the spongy interior. And the basidiomycetes? They’re in the outermost part of the crust, surrounding the other two partners. “They’re everywhere in that outer layer,” says Spribille.

Despite their seemingly obvious location, it took around five years to find them. They’re embedded in a matrix of sugars, as if someone had plastered over them. To see them, Spribille bought laundry detergent from Wal-Mart and used it to very carefully strip that matrix away.

And even when the basidiomycetes were exposed, they weren’t easy to identify. They look exactly like a cross-section from one of the ascomycete branches. Unless you know what you’re looking for, there’s no reason why you’d think there are two fungi there, rather than one — which is why no one realised for 150 years. Spribille only worked out what was happening by labeling each of the three partners with different fluorescent molecules, which glowed red, green, and blue respectively. Only then did the trinity become clear.

Comments

  1. Talnik says:

    Now if we could only get him to work on cancer…

Leave a Reply