Evolutionary algorithms now surpass human designers

Monday, July 30th, 2007

As computer power increases, and as grid computing becomes more common, evolutionary algorithms, which require testing of thousands of “offspring”, become more practical. Evolutionary algorithms now surpass human designers:

Some of these EAs are being used to come up with more exotic versions of existing technologies. Joe Sullivan at the University of Limerick in Ireland used an EA to make a USB flash memory stick that lasts far longer than those on the market today. Typically, memory sticks can be erased and rewritten about 10,000 times. Every time data is erased, residual charge is left on the storage transistors. Eventually, this builds up and prevents the memory being rewritten. Using large voltages to read, write and erase memory, and applying them for longer causes more residual charge. However, applying too little voltage for too little time could make the memory unreliable. To see if he could extend the lifetime without making the device less reliable, Sullivan created a genetic algorithm that varied the voltages and their timings. The result was a combination that meant the memory stick lasted 30 times longer.
[...]
Manos walked off with the $5000 gold prize for combining EAs with the emerging field of “holey” optical fibres (New Scientist, 12 June 1999, p 36). These are shot through with tens of micrometre-wide holes whose exact pattern controls the wavelength of light that can be beamed down them. Previously the holes were arranged in a hexagonal pattern, which has limited the range of bandwidths. That changed when Manos’s team at the University of Sydney, Australia, allowed an EA to breed exotic new hole patterns. One looked like a flower, with larger ovoids as “petals”, and doubled the fibre’s bandwidth. They have patented that fibre and founded a company to market it.

Other prizewinners used EAs to do what humans already do, but faster. Pierre Legrand and colleagues at the University of Bordeaux 2, France, developed an evolutionary system to configure the electrodes for cochlear implants. Up to 22 electrodes on the auditory nerve let cochlear implants restore lost hearing, but the voltages and timings of the signals applied to them are highly individual, requiring much adjustment for speech to be audible. Legrand’s team took just one-and-a-half days to configure an optimal pattern for one patient whose doctors had not succeeded in 10 years.

Not content with aiming for top results however, another group of researchers is using EAs to produce designs that dodge patents on rival inventions. Koza took a 1-metre-tall, Wi-Fi antenna made by Cisco and attempted to create another that did a better job without infringing Cisco’s patent. He used an EA that bred antennas by comparing offspring with how the Cisco patent works and weeding out ones that worked similarly. “Our genetic program engineered around the existing patent and created a novel design that didn’t infringe it,” says Koza. Not only would this allow a company to save money on licensing fees, the new design was also itself patentable.

Leave a Reply