The Expert Mind

Sunday, July 30th, 2006

Philip E. Ross notes that when cognitive scientists want to study The Expert Mind, they study chess masters:

Skill at chess, however, can be measured, broken into components, subjected to laboratory experiments and readily observed in its natural environment, the tournament hall. It is for those reasons that chess has served as the greatest single test bed for theories of thinking — the ‘Drosophila of cognitive science,’ as it has been called.

The take-away message of the article is that prodigies are made, not just born:

The one thing that all expertise theorists agree on is that it takes enormous effort to build these structures in the mind. Simon coined a psychological law of his own, the 10-year rule, which states that it takes approximately a decade of heavy labor to master any field. Even child prodigies, such as Gauss in mathematics, Mozart in music and Bobby Fischer in chess, must have made an equivalent effort, perhaps by starting earlier and working harder than others.

According to this view, the proliferation of chess prodigies in recent years merely reflects the advent of computer-based training methods that let children study far more master games and to play far more frequently against master-strength programs than their forerunners could typically manage. Fischer made a sensation when he achieved the grandmaster title at age 15, in 1958; today’s record-holder, Sergey Karjakin of Ukraine, earned it at 12 years, seven months.

Ericsson argues that what matters is not experience per se but “effortful study,” which entails continually tackling challenges that lie just beyond one’s competence. That is why it is possible for enthusiasts to spend tens of thousands of hours playing chess or golf or a musical instrument without ever advancing beyond the amateur level and why a properly trained student can overtake them in a relatively short time. It is interesting to note that time spent playing chess, even in tournaments, appears to contribute less than such study to a player’s progress; the main training value of such games is to point up weaknesses for future study.

Even the novice engages in effortful study at first, which is why beginners so often improve rapidly in playing golf, say, or in driving a car. But having reached an acceptable performance — for instance, keeping up with one’s golf buddies or passing a driver’s exam — most people relax. Their performance then becomes automatic and therefore impervious to further improvement. In contrast, experts-in-training keep the lid of their mind’s box open all the time, so that they can inspect, criticize and augment its contents and thereby approach the standard set by leaders in their fields.

Where does motivation come from? From doing well early on:

Furthermore, success builds on success, because each accomplishment can strengthen a child’s motivation. A 1999 study of professional soccer players from several countries showed that they were much more likely than the general population to have been born at a time of year that would have dictated their enrollment in youth soccer leagues at ages older than the average. In their early years, these children would have enjoyed a substantial advantage in size and strength when playing soccer with their teammates. Because the larger, more agile children would get more opportunities to handle the ball, they would score more often, and their success at the game would motivate them to become even better.

Leave a Reply